really helpful, I'm having a topology exam tomorrow, i feel confident thanks to you
@Shlungoidwungus5 жыл бұрын
The explanation is good but I think it'd be better served with another example, one that doesn't make use of finite sets particularly. They're good for introductions to a topological concept but they don't often carry well to uncountably infinite spaces like R or R^2.
@TheMathSorcerer5 жыл бұрын
Thank you😄
@Mulkek3 жыл бұрын
Thanks, and it's so easy & simple!
@princekay77483 жыл бұрын
Great video. Thanks
@najaweed92003 жыл бұрын
clean high definition of concept
@speedyphoton54959 жыл бұрын
Thanks so much for your videos!!! They've really helped me a lot.
@zerotoinfinity87344 ай бұрын
Thanks sir for nice explanation ❤🇧🇩🇧🇩
@cold24074 ай бұрын
I just wanna to know why bdA is {b,d}. What is closure of A and A’s complement?
@OmarOmar-wk6qu5 жыл бұрын
thank you so much, thats was so helpful
@TheMathSorcerer5 жыл бұрын
awesome!
@planetofmathematics40993 жыл бұрын
Really it's very helpful
@TheMathSorcerer3 жыл бұрын
Awesome
@shukhratergashov92899 ай бұрын
Awesome 👏
@rawshankoye51726 жыл бұрын
Thank you, its helpful 😊
@TheMathSorcerer6 жыл бұрын
:)
@mohamedali-im6jf5 жыл бұрын
Thank you very much
@esraasalamaq4 жыл бұрын
Thanks for translation in Arabic
@TheMathSorcerer4 жыл бұрын
😀
@crnohd8 жыл бұрын
thanks you helped me
@TheMathSorcerer8 жыл бұрын
hey np thanks for watching:)
@94theengineer5 жыл бұрын
related question but co finite topology on real line, if A=(3,4)U{5}. What would the int(A), cl(A) and b(A) be?
@mabdullahabdullah29678 жыл бұрын
woo vry gud plz also givs more thanks
@md.arifulislam88533 жыл бұрын
Thanks.
@bonbonvrock846 жыл бұрын
Just didn't get the ext(A) part.. I thought that since b is not an interior point or the complement of A then it would be the exterior point?
@Parvezbt8 жыл бұрын
very helpful
@ghadamahmoud47205 жыл бұрын
Thanks
@TheMathSorcerer5 жыл бұрын
np:)
@МахсудаАбдалимова5 жыл бұрын
Thank you for your explaining. b(A°) is a subset of b(A)??I must prove it. Help me pleaseeee
@lerneninverschiedenenforme75137 жыл бұрын
as far as I know: the complement of something and its 'not-complement' together are everything. So how come, that we still have a 'boundary' left. That would make S^C not the real complement, would it?
@AdamFidler16 жыл бұрын
The exterior is the interior OF the complement. Notice an interior is always open, since it's considered the largest open set contained within the set in question. Basically, it just doesn't include the boundary anyway when we take the interior of a complement.
@veerendraharshal46224 жыл бұрын
Sir, Isn't d inside X which by definition is part of the Topology Tau? Shouldn't d therefore be in the interior?
@TheMathSorcerer4 жыл бұрын
X is not contained in A, so no, go to 3:14 or so in the video