Lecture 7: Connections (International Winter School on Gravity and Light 2015)

  Рет қаралды 84,996

The WE-Heraeus International Winter School on Gravity and Light

The WE-Heraeus International Winter School on Gravity and Light

Күн бұрын

Пікірлер: 9
@vs-cw1wc
@vs-cw1wc 8 жыл бұрын
I like how they made an effort in showing the students' questions in text. Very sweet.
@CarlosGonzalez-rg6ht
@CarlosGonzalez-rg6ht 9 жыл бұрын
Wonderful explanation of the covariant derivative and the connections. This series of lectures are amazing, thank you for posting them !!
@wschadow
@wschadow 8 жыл бұрын
A crystal clear series of lectures, thank you!
@feiwang4743
@feiwang4743 9 жыл бұрын
Crystal clear!
@aarontyrrell7803
@aarontyrrell7803 8 жыл бұрын
Does the tensor product rule just follow from part 1 of the definition of a connection since the product of 2 tensors is just a function once it is evaluated at some covector and vector fields?
@danielm.mclaury3202
@danielm.mclaury3202 8 жыл бұрын
If you're talking about condition (iii) at 17:36, then the left-hand side is indeed determined by (i), but not every term on the right-hand side is. So it really does give a separate condition.
@aarontyrrell7803
@aarontyrrell7803 8 жыл бұрын
Can someone please explain how the Leibniz rule implies the equality he writes @31.50
@danielm.mclaury3202
@danielm.mclaury3202 8 жыл бұрын
Note that each Y_m is a function in our neighborhood. Write T = Y_m * id. Then we're trying to determine ∇_X(T(d/dx_m)). Applying the Leibniz rule, we have ∇_X(T(d/dx_m)) = (∇_X T)(d/dx_m) + T(∇_X(d/dx_m)). Rewriting this, ∇_X(T(d/dx_m)) = (∇_X (Y_m * id))(d/dx_m) + Y_m ∇_X(d/dx_m). He also applies the linearity in X to expand the sum. (Note that he's using Einstein notation.)
@michaelstark8182
@michaelstark8182 9 жыл бұрын
very nice lecture
Lecture 8: Parallel Transport & Curvature (International Winter School on Gravity and Light 2015)
1:27:12
The WE-Heraeus International Winter School on Gravity and Light
Рет қаралды 70 М.
Lecture 22: Black Holes (International Winter School on Gravity and Light 2015)
1:37:58
The WE-Heraeus International Winter School on Gravity and Light
Рет қаралды 24 М.
24 Часа в БОУЛИНГЕ !
27:03
A4
Рет қаралды 7 МЛН
БАБУШКА ШАРИТ #shorts
0:16
Паша Осадчий
Рет қаралды 4,1 МЛН
Lecture 2: Topological Manifolds (International Winter School on Gravity and Light 2015)
1:23:01
The WE-Heraeus International Winter School on Gravity and Light
Рет қаралды 166 М.
Lecture 5: Tangent Spaces (International Winter School on Gravity and Light 2015)
1:36:41
The WE-Heraeus International Winter School on Gravity and Light
Рет қаралды 114 М.
Einstein's General Theory of Relativity | Lecture 1
1:38:28
Stanford
Рет қаралды 7 МЛН
1. Introduction to 'The Society of Mind'
2:05:54
MIT OpenCourseWare
Рет қаралды 1,4 МЛН
Lecture 6: Fields (International Winter School on Gravity and Light 2015)
1:15:10
The WE-Heraeus International Winter School on Gravity and Light
Рет қаралды 83 М.
Lecture 3: Multilinear Algebra (International Winter School on Gravity and Light 2015)
1:42:36
The WE-Heraeus International Winter School on Gravity and Light
Рет қаралды 137 М.
Lecture 10: Metric Manifolds (International Winter School on Gravity and Light 2015)
1:20:28
The WE-Heraeus International Winter School on Gravity and Light
Рет қаралды 46 М.
Lecture 9: Newtonian spacetime is curved! (International Winter School on Gravity and Light 2015)
1:48:32
The WE-Heraeus International Winter School on Gravity and Light
Рет қаралды 52 М.
Construction of the tangent bundle - Lec 10 - Frederic Schuller
1:48:50
Frederic Schuller
Рет қаралды 62 М.
24 Часа в БОУЛИНГЕ !
27:03
A4
Рет қаралды 7 МЛН