This Will Be Your Favorite Integral

  Рет қаралды 123,142

BriTheMathGuy

BriTheMathGuy

Күн бұрын

Пікірлер: 214
@BriTheMathGuy
@BriTheMathGuy Жыл бұрын
🎓Become a Math Master With My Intro To Proofs Course! www.udemy.com/course/prove-it-like-a-mathematician/?referralCode=D4A14680C629BCC9D84C
@vitorcurtarelli254
@vitorcurtarelli254 3 жыл бұрын
I don't think you need to use the factorial definition of the Gamma, since the factorial per sè isn't defined for non-natural numbers. You could just use the property that x•Gamma(x) = Gamma(x+1) and that (1/phi) = (phi-1) at 3:42 for a more "formal" solution. Great video tho! Loved the reupload fixing that mistake at the start, shows a great care and love for the craft.
@BriTheMathGuy
@BriTheMathGuy 3 жыл бұрын
I try :) Thanks so much for watching!
@YossiSirote
@YossiSirote 3 жыл бұрын
I did not see that one coming. 😀
@uggupuggu
@uggupuggu Жыл бұрын
factorial is defined for non-natural numbers, you are wrong
@vitorcurtarelli254
@vitorcurtarelli254 Жыл бұрын
@@uggupuggu objectively, no. n! is defined as n*(n-1)*...*2*1. Using the property that n! = n*(n-1)!, we can use the Gamma function to non-natural numbers, but by definition the factorial is defined only for positive integers. Saying that (1/2)! = √π/2 is an abuse of notation.
@soulsilencer1864
@soulsilencer1864 3 жыл бұрын
"To solve this we have to know a few things about the golden ratio." Yeah the lack of information about phi isn't the problem here :D
@BriTheMathGuy
@BriTheMathGuy 3 жыл бұрын
😂
@Anokosciant
@Anokosciant 3 жыл бұрын
i loves when he still explain basic algebra and uses beta and gamma function
@Fire_Axus
@Fire_Axus 3 ай бұрын
YouFeeAreIrr
@penta4568
@penta4568 3 жыл бұрын
When in doubt, the answer is probably 1 or 0. This helped me more times in my math undergrad wayyy more than it really should’ve lmao
@BriTheMathGuy
@BriTheMathGuy 3 жыл бұрын
Facts.
@tsan_jey
@tsan_jey 3 жыл бұрын
Who can't relate?
@muskyoxes
@muskyoxes 3 жыл бұрын
Math is too hard then, i guess, because physics is just the study of things that are zero
@quentind1924
@quentind1924 2 жыл бұрын
What about e and pi ?
@angelmendez-rivera351
@angelmendez-rivera351 2 жыл бұрын
@@muskyoxes what?
@francescomantuano1505
@francescomantuano1505 3 жыл бұрын
you really have one of the most entertaining and underrated math-related channel, keep up the work cause we all love it!!
@BriTheMathGuy
@BriTheMathGuy 3 жыл бұрын
Wow, thank you!
@GaryFerrao
@GaryFerrao 3 жыл бұрын
wow. you re-uploaded just to fix the a/b = (a + b)/b. wow.
@rodriguezzamarripadiego9625
@rodriguezzamarripadiego9625 3 жыл бұрын
The fact that the integral is equal to 1 make my head explode, nice video
@BriTheMathGuy
@BriTheMathGuy 3 жыл бұрын
Thanks a ton!
@violintegral
@violintegral 3 жыл бұрын
Dr Peyam also did a video on this integral, taking a completely different route. He actually guessed an antiderivative of the function instead. It wasn't an intuitive solution, but I still found it pretty surprising that a complicated function with irrational powers like this one has an elementary antiderivative. It shows just how special phi is!
@BriTheMathGuy
@BriTheMathGuy 3 жыл бұрын
For sure!
@muskyoxes
@muskyoxes 3 жыл бұрын
I don't think the antiderivative itself is elementary, just that it has a nice value for these particular endpoints.
@violintegral
@violintegral 3 жыл бұрын
@@muskyoxes no, it's elementary lol. Go watch his video if you don't believe me!
@xinpingdonohoe3978
@xinpingdonohoe3978 10 ай бұрын
​@@muskyoxes x(1+x^φ)^(-1/φ)+c
@saketram9354
@saketram9354 3 жыл бұрын
Yayyy thank you so much Bri ! I wanted this!
@BriTheMathGuy
@BriTheMathGuy 3 жыл бұрын
You're so welcome!
@hsjkdsgd
@hsjkdsgd 3 жыл бұрын
Absolutely incredible
@BriTheMathGuy
@BriTheMathGuy 3 жыл бұрын
Glad you thought so!
@robertmeadows4852
@robertmeadows4852 3 жыл бұрын
Another great video from Bri. This is a great solution and a really nice use of the Beta and Gamma functions, however, I evaluated the integral without using any special functions: Let u=1+x^phi, then, x=(u-1)^(1/phi), so dx=(1/phi)*(u-1)^(1/phi -1). Since, phi^2 = phi + 1, dividing by phi and taking 2 from both sides gives, 1/phi - 1 = phi - 2. Using this to simplify the expression for dx gives, dx = (1/phi)*(u-1)^(phi-2) du. At our bounds we have, x=0 -> u=1, x=inf -> u=inf. Re-writing the integral in terms of u gives: I = int( (1/phi)*(1/u^phi)*((u-1)^(phi-2)) du ) from 1 to infinity. By pulling the constant out the front and multiplying the integrand by (u^-2)/(u^-2) gives, I = (1/phi)*int( (u^-2)*(1/u^(phi-2))*(u-1)^(phi-2) du ) from 1 to infinity Rearranging the integrand, by noticing that the powers of u are now equal, and simplifying gives: I = (1/phi)*int( (u^-2)*(1 - 1/u)^(phi-2) du ) from 1 to infinity, Now let v = 1 - 1/u, so dv = u^-2 du. When u=1 -> v=0, u=inf -> v=1. This then gives: I = (1/phi)*int( v^(phi-2) dv) from 0 to 1. Integrating using the power rule and plugging in the bounds gives: I = (1/phi)*(1/(phi-1)) = 1/(phi^2 - phi) Since phi^2 = phi + 1, then subtracting phi from both sides gives, phi^2 - phi = 1, which reduced our integral to: I = 1 Hope that's clear enough for people to follow. I honestly didn't think I was gonna be able to solve it but then I noticed the beautiful substitution of v = 1 - 1/u.
@mchmch6185
@mchmch6185 3 жыл бұрын
Hi Robert. I basically found the same thing but after following Bri's first stage of u=x^phi rather than your u=1+x^phi. You then get the integral of 1/E where E is u^(2-phi)*(1+u)^phi = u^2*(1+(1/u))^phi and then a v=1/u substitution seems maybe a bit more obvious, followed by v -> v-1. OK, I'm doing v=(1/u)+1 rather than your final v=1-(1/u) [and getting a final integral from 1 to infty rather than 0 to 1], but maybe it is easier to spot with the positives.
@judedavis92
@judedavis92 3 жыл бұрын
Anyone else get the shivers whenever he says: ‘pheee’ instead of phi
@MichaelRothwell1
@MichaelRothwell1 3 жыл бұрын
I still do, even though I am used to the fact that in Britain its pronounced phy and in the US its pronounced phee.
@zeozen
@zeozen 3 жыл бұрын
"fee" is closer to greek pronounciation:D
@nordicexile7378
@nordicexile7378 3 жыл бұрын
Yeah, just sounds wrong to me. I mean, we say "pie" instead of "pee" for "π", don't we?
@thatkindcoder7510
@thatkindcoder7510 3 жыл бұрын
This seems like a pretty brutal integral, don't know why I'd; *Evaluates to one, and uses the Beta and Gamma function* I could base a religion out of this
@willyh.r.1216
@willyh.r.1216 3 жыл бұрын
Aesthetically elegant. Thanks 4 sharing.
@BriTheMathGuy
@BriTheMathGuy 3 жыл бұрын
Glad you like it!
@danipent3550
@danipent3550 3 жыл бұрын
01:20 oh wow thanks nobody has ever told me that I tend towards infinity 😊
@pengutiny6464
@pengutiny6464 5 ай бұрын
Oh-
@manucitomx
@manucitomx 3 жыл бұрын
Wow! Loved this.
@BriTheMathGuy
@BriTheMathGuy 3 жыл бұрын
So glad!
@pwsk
@pwsk 3 жыл бұрын
OMG! I'm a lover of integrals and your videos make me live them... You are amazing! 😃
@BriTheMathGuy
@BriTheMathGuy 3 жыл бұрын
Glad you like them!
@masterclash9959
@masterclash9959 2 жыл бұрын
It took a while, but I figured out how to do this with only u-substitution! Starting at the beginning, I set u=1+x^phi, and after following similar steps from the video, I rearranged the function to get: 1/u^phi * 1/(u-1) * x du all over phi. Solving for x in terms of u gets (u-1)^(1/phi), and plugging back in and dealing with exponents gets us: 1/u^phi * 1/[(u-1)^(1-1/phi)] du all over phi. Plugging in 1/phi = phi - 1 for the second term gets us: 1/u^phi * 1/[(u-1)^(2-phi)] du all over phi. Bringing the second term to the numerator and splitting up the exponent, we get: 1/u^phi * (u-1)^phi * 1/(u-1)^2 du all over phi. Because the first two terms have the same exponents, we can combine the terms inside of them: (1 - 1/u)^phi * 1/(u-1)^2 du all over phi. We want the second term in terms of 1 - 1/u, so taking a 1/u^2 out of it and flipping the signs (no change because -1 is squared), and combining with the first term, we get: (1 - 1/u)^(phi-2) * u^-2 du all over phi. Lastly, doing w-substitution where w = 1 - 1/u and dw = u^-2 will yield an integrand of: w^(phi-2) dw all over phi. And an anti derivative of: [w^(phi-1)]/(phi-1) all over phi, integrated from 0 to 1 - 1/(inf^phi + 1) if we did our u-subs correctly. Doing our strategy of taking the limit as a variable (b) goes to infinity for indefinite integrals and plugging in, we get: [(1-1/[b^phi + 1])^(phi-1)] / (phi-1) all over phi where b goes to infinity. Because b goes to infinity, the numerator just turns to 1, leaving us with: 1/(phi-1) * 1/phi And finally, plugging in phi - 1 = phi^-1 for the first term nets us our magical answer… 1 Very cool!
@ass123qdwqdw
@ass123qdwqdw Жыл бұрын
why cant to tkae x = 1??
@sahiljain1504
@sahiljain1504 10 ай бұрын
Put 1+ 1/x^phi = u. Solves in second
@alexjaeger
@alexjaeger 3 жыл бұрын
Dejà-vu, I've just been in this place before...
@jameslalonde4420
@jameslalonde4420 3 жыл бұрын
Bro it always amazes me how you solve these abstract type integrals. Whenever I run into integrals like these I just jave no idea what to do but you make it look so simple. Good job
@MemyBurosi
@MemyBurosi 3 жыл бұрын
This vid needs to be watched over and over
@BriTheMathGuy
@BriTheMathGuy 3 жыл бұрын
Glad you think so!
@law26504
@law26504 3 жыл бұрын
An amazing video man. Keep it up!
@BriTheMathGuy
@BriTheMathGuy 3 жыл бұрын
Thanks a ton!
@amirb715
@amirb715 3 жыл бұрын
no need for gamma or beta function at all....it's much more simpler. @2:30 just let z=u/(1+u) then u=z/(1-z) and it becomes a simple algebraic integral.
@simon39wang43
@simon39wang43 3 жыл бұрын
This is absolutely amazing
@BriTheMathGuy
@BriTheMathGuy 3 жыл бұрын
glad you thought so!
@simon39wang43
@simon39wang43 3 жыл бұрын
@@BriTheMathGuy thanks, I subscribed
@gabitheancient7664
@gabitheancient7664 3 жыл бұрын
indeed, that is now my favourite integral, will save in my favorites omg
@edoardomartignoni3222
@edoardomartignoni3222 3 жыл бұрын
Frickin awesome indeed… 👍👍
@BriTheMathGuy
@BriTheMathGuy 3 жыл бұрын
Glad you thought so! Thanks for watching :)
@kjl3080
@kjl3080 3 жыл бұрын
This looked so scary but if you think about the definition of the golden ratio in terms of the sides of a rectangle it’s no wonder why integrating it gives such a nice number
@jonathandambrosio4628
@jonathandambrosio4628 3 жыл бұрын
Great videos! So well made and fun to watch.
@BriTheMathGuy
@BriTheMathGuy 3 жыл бұрын
Glad you like them!
@RedTitan5
@RedTitan5 3 жыл бұрын
Wow... New info... Thank you for sharing...sir
@BriTheMathGuy
@BriTheMathGuy 3 жыл бұрын
So nice of you!
@jrcarlyon680
@jrcarlyon680 3 жыл бұрын
Please please keep your hands still. Thanks so much🙏
@giuseppemalaguti435
@giuseppemalaguti435 3 жыл бұрын
grande spiegazione..bravo
@YaBoyUneven
@YaBoyUneven 2 жыл бұрын
I swear every time a problem turns out like that I get a mathgasm, there, I said it
@khaledchatah3425
@khaledchatah3425 2 жыл бұрын
WHAT THE ACTUAL FUCK. THAT WAS SO FKIN SATISFYING
@yurfwendforju
@yurfwendforju 9 ай бұрын
though I wont be able to remember in 2 minutes, it is indeed my favorite integral at the moment.
@Monkieteam
@Monkieteam 3 жыл бұрын
I did by substituing for u = 1/(1+x^phi), after that there are some cancelations and the integral becomes very simple, without The need to know special functions. I would say however it is certainly more stylish to recognise the beta/gamma functions in there
@bhz8947
@bhz8947 3 жыл бұрын
My math is very rough (what I remember from my C.S. degree), but integration has always seemed so ad hoc to me, like a collection of disjointed heuristics. Is it basically a tradeoff between the complexity of how we represent formulas vs. the complexity of the algorithm we use to integrate them?
@Павал-л8ч
@Павал-л8ч 2 жыл бұрын
Like in proving theorems, there is probably no general algorithm in solving integrals analytically
@BernardBolanowski
@BernardBolanowski 3 ай бұрын
at 1:52 x is just u^1/phi or a radical with index of phi
@miguelcerna7406
@miguelcerna7406 3 жыл бұрын
Fascinating. I'm fascinated.
@BriTheMathGuy
@BriTheMathGuy 3 жыл бұрын
Glad to hear it :)
@buzyparticals3753
@buzyparticals3753 2 жыл бұрын
When he said "pheee", I felt that
@SuperYoonHo
@SuperYoonHo 2 жыл бұрын
sum intergral
@ishanagarwal766
@ishanagarwal766 3 жыл бұрын
Mind= so blown even the quarks got split
@BriTheMathGuy
@BriTheMathGuy 3 жыл бұрын
🤯
@lukandrate9866
@lukandrate9866 Жыл бұрын
Instead of using the beta function it is possible to just transform u^(φ-2)du into u^φ*d(-1/u), substitute t = -1/u and then it simplifies and we get what we wanted
@chimetimepaprika
@chimetimepaprika 3 жыл бұрын
Dude, this year has been like math explosion festinghouse. Nice.
@aidenwinter1117
@aidenwinter1117 3 жыл бұрын
1:39 with respect to me? Never thought I’d get any respect at all 🥺
@Ben-rd3mg
@Ben-rd3mg 3 жыл бұрын
What a brilliant integral
@GlorifiedTruth
@GlorifiedTruth 3 жыл бұрын
Mind blown, but more in a makes me want to cry way. I need to brush up on my integrals!
@netanelkomm5636
@netanelkomm5636 3 ай бұрын
4:00 but how do you know that properties of factorials apply to non integer inputs?
@zahari20
@zahari20 2 жыл бұрын
Please do not confuse people! The beta function is written by B(x,y). Capital Greek beta.
@Nebulisuzer
@Nebulisuzer 2 жыл бұрын
beta is ß not B
@holyshit922
@holyshit922 3 жыл бұрын
My way for calculating this integral Indefinite integral Int(1/(1+x^φ)^φ,x) can be quite easily integrated by parts Int(1/(1+x^φ)^φ,x)=Int((1+x^φ)/(1+x^φ)^φ,x)-Int(x^φ/(1+x^φ)^φ,x) Int(1/(1+x^φ)^φ,x)=Int(1/(1+x^φ)^(φ-1),x)-Int(x^φ/(1+x^φ)^φ,x) Now we can integrate Int(1/(1+x^φ)^(φ-1),x) by parts with u = 1/(1+x^φ)^(φ-1) and dv = dx After integration by parts we can add integrals we will get Int(1/(1+x^φ)^φ,x)=Int(1/(1+x^φ)^(φ-1),x)-Int(x^φ/(1+x^φ)^φ,x) Int(1/(1+x^φ)^φ,x)=x/(1+x^φ)^(φ-1)-Int(x*(-(φ-1)(1+x^φ)^(-(φ-1)-1))*φ*x^(φ-1),x)-Int(x^φ/(1+x^φ)^φ,x) Int(1/(1+x^φ)^φ,x)=x/(1+x^φ)^(φ-1)+Int(φ(φ-1)x^φ/(1+x^φ)^φ,x)-Int(x^φ/(1+x^φ)^φ,x) Int(1/(1+x^φ)^φ,x)=x/(1+x^φ)^(φ-1)+Int(φ*1/φ*x^φ/(1+x^φ)^φ,x)-Int(x^φ/(1+x^φ)^φ,x) Int(1/(1+x^φ)^φ,x)=x/(1+x^φ)^(φ-1)+Int(x^φ/(1+x^φ)^φ,x)-Int(x^φ/(1+x^φ)^φ,x) Int(1/(1+x^φ)^φ,x)=x/(1+x^φ)^(φ-1)+C If we want to calculate this integral using antiderivative we have to calculate the limit Now we need to calculate limit limit(x/(1+x^φ)^(φ-1),x=infinity) To calculate this limit all we need to do is some algebraic manipulations limit(x/(1+x^φ)^(φ-1),x=infinity)=limit(1/((1+x^φ)^(φ-1)/x),x=infinity) =1/limit(((1+x^φ)^(φ-1)/(x^(1/(φ-1))^(φ-1))),x=infinity) =1/limit((1+x^φ)^(φ-1)/x^(φ)^(φ-1),x=infinity) =1/limit(((1+x^φ)/x^φ)^(φ-1),x=infinity) =1/limit((1+1/x^φ)^(φ-1),x=infinity)
@Samir-zb3xk
@Samir-zb3xk 6 ай бұрын
An interesting fact that I realized from playing around with this integral is that Γ(φ+1)=Γ(1/φ) even though φ+1≠1/φ
@noyadishon6649
@noyadishon6649 3 жыл бұрын
THIS IS SO COOL
@BriTheMathGuy
@BriTheMathGuy 3 жыл бұрын
😎😎😎😎
@Shreyas_Jaiswal
@Shreyas_Jaiswal 2 жыл бұрын
Yes, now I can integrate any expression, just by introducing a new function. 😀😀
@geraltofrivia9424
@geraltofrivia9424 2 жыл бұрын
This is beautiful
@threepointone415
@threepointone415 2 жыл бұрын
This is a very cool integral, but my favorite is probably the integral from -infinity to +infinity e^-x^2 dx, which comes out as √pi
@tusharchilling6886
@tusharchilling6886 3 жыл бұрын
I am amazed to see that mathematicians have come up with shortcuts for integration as well to save our time. Although I did not understand the technical stuff, I loved how this abstraction and clever substitution of beta function made this problem so beautiful. I remember studying gamma functions in my college. These are some college level concepts
@nandanmadhuj7172
@nandanmadhuj7172 3 жыл бұрын
I substituted x^(phi)=tan^2(theta). Nice problem.
@BriTheMathGuy
@BriTheMathGuy 3 жыл бұрын
Cool!
@TheTorturer666
@TheTorturer666 3 жыл бұрын
Favoritegral.
@BriTheMathGuy
@BriTheMathGuy 3 жыл бұрын
😎
@storeksfeed
@storeksfeed 3 жыл бұрын
I literally just randomly googled this video lol. But I like it :)
@BriTheMathGuy
@BriTheMathGuy 3 жыл бұрын
Great to hear!
@ethanstrumwasser8798
@ethanstrumwasser8798 3 жыл бұрын
awesome video as always! only thing wrong with them is that they end :P
@BriTheMathGuy
@BriTheMathGuy 3 жыл бұрын
Thanks! 😄
@dipayandasgupta7506
@dipayandasgupta7506 3 жыл бұрын
This was on cantor dust level 1…
@monx94
@monx94 3 жыл бұрын
Nice!
@BriTheMathGuy
@BriTheMathGuy 3 жыл бұрын
Thank you! Cheers!
3 жыл бұрын
Make some videos about zeta function , please
@mathematicsmi
@mathematicsmi 3 жыл бұрын
kzbin.info/www/bejne/qZrdn5Vvqpqrnqs
@coast-guard-1cargo-spectio552
@coast-guard-1cargo-spectio552 3 жыл бұрын
(You should pay a fine for calling Phi, Fee.)
@BriTheMathGuy
@BriTheMathGuy 3 жыл бұрын
👮‍♂️
@chanderule605
@chanderule605 3 жыл бұрын
I mean, that's how every language but english calls it
@chjxb
@chjxb 3 жыл бұрын
this is not maths but literature
@BriTheMathGuy
@BriTheMathGuy 3 жыл бұрын
🧐
@shanmugasundaram9688
@shanmugasundaram9688 3 жыл бұрын
I wonder the golden ratio has so many identities.
@PianoBounty
@PianoBounty Жыл бұрын
I don’t think you can actually use the factorial for non-natural numbers. Why not use the properties of the gamma function instead?
@tusharchilling6886
@tusharchilling6886 3 жыл бұрын
What if b is larger? It just makes b=0. And if b is 0, a should be a negative number? And also, a+b/b will tend to infinity which means a/b=infinity which just means a=0 x infinity But a is negative, right? The golden ratio formula has a contradiction
@tsan_jey
@tsan_jey 3 жыл бұрын
I am watching this and pretend I understand everything after the word "integral."
@jatloe
@jatloe 3 жыл бұрын
That was very cool :)
@BriTheMathGuy
@BriTheMathGuy 3 жыл бұрын
Glad you thought so :)
@elwind762
@elwind762 3 жыл бұрын
I clickbaited because the differential variable wasn’t specified in the thumbnail :(
@BriTheMathGuy
@BriTheMathGuy 3 жыл бұрын
🥲
@sharpnova2
@sharpnova2 2 жыл бұрын
is it ok to undo the analytic continuation of factorials (namely Γ(x)) when your argument isn't a natural number? it'll usually work, but you'll need to stipulate caveats regarding the evaluation of factorials, enforcing their arrangement as quotients of successive or integer-modulo arguments to the factorial function. Γ(x) also has the property that Γ(x + n) = x^n * Γ(x). so you could have just evaluated that directly. very pretty problem. i hardly ever see people talk about β(x, y)
@aadilhasan8319
@aadilhasan8319 2 жыл бұрын
feynman’s technique for a parameter k in place of phi, so differentiating under the integral?
@Swaaaat1
@Swaaaat1 3 жыл бұрын
At the beginning i thought this was an ex joke.
@catsarecool9773
@catsarecool9773 Жыл бұрын
I hit the like button as soon as I heard you were pronouncing phi correctly LOL
@cheesecak11857
@cheesecak11857 3 жыл бұрын
it's now my favourite integral lol
@alibekturashev6251
@alibekturashev6251 2 жыл бұрын
some people pronounce φ as phai and others as pheeh. which one should i use? i’m not an english speaker and i’m confused
@GuillermoMartinez-eq7kt
@GuillermoMartinez-eq7kt 5 ай бұрын
Great video! But a Gamma function is equivalent to its argument factorial only when the argument is an integer, which is not the case for Phi. Is this correct?
@kennethgee2004
@kennethgee2004 2 жыл бұрын
ah what so the answer of one seem pretty reasonable because the integral of 1/x is ln x and the limit of (1+1/x)^x as x goes to infinity is e. The answer to ln e is 1. As an aside, 0! is not equal to 1 despite popular opinion. The gamma is not an exact answer for generalized factorials. The definition of factorial requires that the domain is the set of natural numbers. The gamma function is generalized in that it is an analytic continuation, but it loses meaning when things are more generalized.
@lukandrate9866
@lukandrate9866 Жыл бұрын
Γ(1+n) = n! for all natural n Γ(1+0) = integral from 0 to inf of e^(-t) dt = 1 implies 0! = 1
@Fire_Axus
@Fire_Axus 3 ай бұрын
where is the video right here?
@simarjeetsingh2589
@simarjeetsingh2589 3 жыл бұрын
Yo the algorithm finally recommending some good channels!
@user-wx8bm1pg1d
@user-wx8bm1pg1d 3 жыл бұрын
Damn it. I was hoping this didn't require a function I don't know of
@BriTheMathGuy
@BriTheMathGuy 3 жыл бұрын
There are other ways to do it!
@navsha2
@navsha2 Жыл бұрын
I guess that the golden ratio has infinite possibilities ( If you can change the value of the variables such as x)
@decreasing_entropy3003
@decreasing_entropy3003 3 жыл бұрын
Isn't Γ(x)=x! iff x belongs to the set of natural numbers? Here, φ is not a natural number, so shouldn't we not be using notion of factorial?
3 жыл бұрын
Where's the plot? I need a plot of the distro! Where is my plot!!
@alexandrepatrot
@alexandrepatrot 5 ай бұрын
Nice video, but notice you should have employed the properties of Gamma rather than the factorial at the end of the calculations. Gamma(phi-1)= (phi-1)Gamma(phi-2) and the result follows. Observe that factorial emerges only for natural numbers which is not the case for phi.
@Dream-op5th
@Dream-op5th 3 жыл бұрын
How do you get that black background?...do you literally record it in a black planted rookm with a light on you?
@BriTheMathGuy
@BriTheMathGuy 3 жыл бұрын
Green screen :)
@joyli9893
@joyli9893 Жыл бұрын
Golden integral
@fasihullisan3066
@fasihullisan3066 3 жыл бұрын
very nice
@BriTheMathGuy
@BriTheMathGuy 3 жыл бұрын
Glad you thought so!
@igvc1876
@igvc1876 3 жыл бұрын
you might want to reconsider showing yourself in the picture.
@BriTheMathGuy
@BriTheMathGuy 3 жыл бұрын
What makes you say that? (genuinely asking)
@alperenerol1852
@alperenerol1852 3 жыл бұрын
There is a famous saying, if there is a nasty integral the answer is a gamma or beta function.
@sethdon1100
@sethdon1100 3 жыл бұрын
If you love the Gamma Function, prove that gamma(z)*gamma(1-z)=pi/sin(pi*z) for all non integer z
@MaxBerson
@MaxBerson 2 жыл бұрын
Shout out for pronouncing the Greek correctly!
@lapizuko
@lapizuko Жыл бұрын
Instead of using some properties of the beta function which feels quite.. obscure I guess, you could've really proven that result by deriving the prof of that property in that specific case or something.
@NeagVasileNV-P
@NeagVasileNV-P Жыл бұрын
Hello! :) Could you tell me, please, the name of the software that you're using in the presentation? :) TY!
@thetruealex7478
@thetruealex7478 3 жыл бұрын
Does this integral have a practical use?
@tamazimuqeria6496
@tamazimuqeria6496 3 жыл бұрын
New integral idea Int from -infinity to infinity (e^((-(x-m)^2)/(2(n)^2))dx
@rubenvela44
@rubenvela44 3 жыл бұрын
Golden triangle
@ZeroJingz
@ZeroJingz 3 жыл бұрын
am i the only one who didn't understand a thing but still watched till the end! 🤣
@Zi7ar21
@Zi7ar21 3 жыл бұрын
Nah Rendering Equation is my favorite
@otesunki
@otesunki 3 жыл бұрын
....i swear ive seen this....
You Might Be Making This Mistake
8:01
BriTheMathGuy
Рет қаралды 144 М.
This Problem is Smooth like Butter
4:50
BriTheMathGuy
Рет қаралды 132 М.
БАБУШКА ШАРИТ #shorts
0:16
Паша Осадчий
Рет қаралды 4,1 МЛН
The Integral of your Dreams (or Nightmares)
8:41
BriTheMathGuy
Рет қаралды 431 М.
I Just Can't Believe what the Math is Telling Me
6:25
BriTheMathGuy
Рет қаралды 187 М.
|i Factorial| You Won't Believe The Outcome
8:24
BriTheMathGuy
Рет қаралды 384 М.
This integral is actually one of your favorite constants
10:43
3 Paradoxes That Gave Us Calculus
13:35
Up and Atom
Рет қаралды 810 М.
The Most Intimidating Integral I've Ever Seen
6:36
BriTheMathGuy
Рет қаралды 83 М.
The Bernoulli Integral is ridiculous
10:00
Dr. Trefor Bazett
Рет қаралды 717 М.
Integrate x^-x dx
20:37
Prime Newtons
Рет қаралды 150 М.
Line Integrals Are Simpler Than You Think
21:02
Foolish Chemist
Рет қаралды 157 М.