🎓Become a Math Master With My Intro To Proofs Course! www.udemy.com/course/prove-it-like-a-mathematician/?referralCode=D4A14680C629BCC9D84C
@vitorcurtarelli2543 жыл бұрын
I don't think you need to use the factorial definition of the Gamma, since the factorial per sè isn't defined for non-natural numbers. You could just use the property that x•Gamma(x) = Gamma(x+1) and that (1/phi) = (phi-1) at 3:42 for a more "formal" solution. Great video tho! Loved the reupload fixing that mistake at the start, shows a great care and love for the craft.
@BriTheMathGuy3 жыл бұрын
I try :) Thanks so much for watching!
@YossiSirote3 жыл бұрын
I did not see that one coming. 😀
@uggupuggu Жыл бұрын
factorial is defined for non-natural numbers, you are wrong
@vitorcurtarelli254 Жыл бұрын
@@uggupuggu objectively, no. n! is defined as n*(n-1)*...*2*1. Using the property that n! = n*(n-1)!, we can use the Gamma function to non-natural numbers, but by definition the factorial is defined only for positive integers. Saying that (1/2)! = √π/2 is an abuse of notation.
@soulsilencer18643 жыл бұрын
"To solve this we have to know a few things about the golden ratio." Yeah the lack of information about phi isn't the problem here :D
@BriTheMathGuy3 жыл бұрын
😂
@Anokosciant3 жыл бұрын
i loves when he still explain basic algebra and uses beta and gamma function
@Fire_Axus3 ай бұрын
YouFeeAreIrr
@penta45683 жыл бұрын
When in doubt, the answer is probably 1 or 0. This helped me more times in my math undergrad wayyy more than it really should’ve lmao
@BriTheMathGuy3 жыл бұрын
Facts.
@tsan_jey3 жыл бұрын
Who can't relate?
@muskyoxes3 жыл бұрын
Math is too hard then, i guess, because physics is just the study of things that are zero
@quentind19242 жыл бұрын
What about e and pi ?
@angelmendez-rivera3512 жыл бұрын
@@muskyoxes what?
@francescomantuano15053 жыл бұрын
you really have one of the most entertaining and underrated math-related channel, keep up the work cause we all love it!!
@BriTheMathGuy3 жыл бұрын
Wow, thank you!
@GaryFerrao3 жыл бұрын
wow. you re-uploaded just to fix the a/b = (a + b)/b. wow.
@rodriguezzamarripadiego96253 жыл бұрын
The fact that the integral is equal to 1 make my head explode, nice video
@BriTheMathGuy3 жыл бұрын
Thanks a ton!
@violintegral3 жыл бұрын
Dr Peyam also did a video on this integral, taking a completely different route. He actually guessed an antiderivative of the function instead. It wasn't an intuitive solution, but I still found it pretty surprising that a complicated function with irrational powers like this one has an elementary antiderivative. It shows just how special phi is!
@BriTheMathGuy3 жыл бұрын
For sure!
@muskyoxes3 жыл бұрын
I don't think the antiderivative itself is elementary, just that it has a nice value for these particular endpoints.
@violintegral3 жыл бұрын
@@muskyoxes no, it's elementary lol. Go watch his video if you don't believe me!
@xinpingdonohoe397810 ай бұрын
@@muskyoxes x(1+x^φ)^(-1/φ)+c
@saketram93543 жыл бұрын
Yayyy thank you so much Bri ! I wanted this!
@BriTheMathGuy3 жыл бұрын
You're so welcome!
@hsjkdsgd3 жыл бұрын
Absolutely incredible
@BriTheMathGuy3 жыл бұрын
Glad you thought so!
@robertmeadows48523 жыл бұрын
Another great video from Bri. This is a great solution and a really nice use of the Beta and Gamma functions, however, I evaluated the integral without using any special functions: Let u=1+x^phi, then, x=(u-1)^(1/phi), so dx=(1/phi)*(u-1)^(1/phi -1). Since, phi^2 = phi + 1, dividing by phi and taking 2 from both sides gives, 1/phi - 1 = phi - 2. Using this to simplify the expression for dx gives, dx = (1/phi)*(u-1)^(phi-2) du. At our bounds we have, x=0 -> u=1, x=inf -> u=inf. Re-writing the integral in terms of u gives: I = int( (1/phi)*(1/u^phi)*((u-1)^(phi-2)) du ) from 1 to infinity. By pulling the constant out the front and multiplying the integrand by (u^-2)/(u^-2) gives, I = (1/phi)*int( (u^-2)*(1/u^(phi-2))*(u-1)^(phi-2) du ) from 1 to infinity Rearranging the integrand, by noticing that the powers of u are now equal, and simplifying gives: I = (1/phi)*int( (u^-2)*(1 - 1/u)^(phi-2) du ) from 1 to infinity, Now let v = 1 - 1/u, so dv = u^-2 du. When u=1 -> v=0, u=inf -> v=1. This then gives: I = (1/phi)*int( v^(phi-2) dv) from 0 to 1. Integrating using the power rule and plugging in the bounds gives: I = (1/phi)*(1/(phi-1)) = 1/(phi^2 - phi) Since phi^2 = phi + 1, then subtracting phi from both sides gives, phi^2 - phi = 1, which reduced our integral to: I = 1 Hope that's clear enough for people to follow. I honestly didn't think I was gonna be able to solve it but then I noticed the beautiful substitution of v = 1 - 1/u.
@mchmch61853 жыл бұрын
Hi Robert. I basically found the same thing but after following Bri's first stage of u=x^phi rather than your u=1+x^phi. You then get the integral of 1/E where E is u^(2-phi)*(1+u)^phi = u^2*(1+(1/u))^phi and then a v=1/u substitution seems maybe a bit more obvious, followed by v -> v-1. OK, I'm doing v=(1/u)+1 rather than your final v=1-(1/u) [and getting a final integral from 1 to infty rather than 0 to 1], but maybe it is easier to spot with the positives.
@judedavis923 жыл бұрын
Anyone else get the shivers whenever he says: ‘pheee’ instead of phi
@MichaelRothwell13 жыл бұрын
I still do, even though I am used to the fact that in Britain its pronounced phy and in the US its pronounced phee.
@zeozen3 жыл бұрын
"fee" is closer to greek pronounciation:D
@nordicexile73783 жыл бұрын
Yeah, just sounds wrong to me. I mean, we say "pie" instead of "pee" for "π", don't we?
@thatkindcoder75103 жыл бұрын
This seems like a pretty brutal integral, don't know why I'd; *Evaluates to one, and uses the Beta and Gamma function* I could base a religion out of this
@willyh.r.12163 жыл бұрын
Aesthetically elegant. Thanks 4 sharing.
@BriTheMathGuy3 жыл бұрын
Glad you like it!
@danipent35503 жыл бұрын
01:20 oh wow thanks nobody has ever told me that I tend towards infinity 😊
@pengutiny64645 ай бұрын
Oh-
@manucitomx3 жыл бұрын
Wow! Loved this.
@BriTheMathGuy3 жыл бұрын
So glad!
@pwsk3 жыл бұрын
OMG! I'm a lover of integrals and your videos make me live them... You are amazing! 😃
@BriTheMathGuy3 жыл бұрын
Glad you like them!
@masterclash99592 жыл бұрын
It took a while, but I figured out how to do this with only u-substitution! Starting at the beginning, I set u=1+x^phi, and after following similar steps from the video, I rearranged the function to get: 1/u^phi * 1/(u-1) * x du all over phi. Solving for x in terms of u gets (u-1)^(1/phi), and plugging back in and dealing with exponents gets us: 1/u^phi * 1/[(u-1)^(1-1/phi)] du all over phi. Plugging in 1/phi = phi - 1 for the second term gets us: 1/u^phi * 1/[(u-1)^(2-phi)] du all over phi. Bringing the second term to the numerator and splitting up the exponent, we get: 1/u^phi * (u-1)^phi * 1/(u-1)^2 du all over phi. Because the first two terms have the same exponents, we can combine the terms inside of them: (1 - 1/u)^phi * 1/(u-1)^2 du all over phi. We want the second term in terms of 1 - 1/u, so taking a 1/u^2 out of it and flipping the signs (no change because -1 is squared), and combining with the first term, we get: (1 - 1/u)^(phi-2) * u^-2 du all over phi. Lastly, doing w-substitution where w = 1 - 1/u and dw = u^-2 will yield an integrand of: w^(phi-2) dw all over phi. And an anti derivative of: [w^(phi-1)]/(phi-1) all over phi, integrated from 0 to 1 - 1/(inf^phi + 1) if we did our u-subs correctly. Doing our strategy of taking the limit as a variable (b) goes to infinity for indefinite integrals and plugging in, we get: [(1-1/[b^phi + 1])^(phi-1)] / (phi-1) all over phi where b goes to infinity. Because b goes to infinity, the numerator just turns to 1, leaving us with: 1/(phi-1) * 1/phi And finally, plugging in phi - 1 = phi^-1 for the first term nets us our magical answer… 1 Very cool!
@ass123qdwqdw Жыл бұрын
why cant to tkae x = 1??
@sahiljain150410 ай бұрын
Put 1+ 1/x^phi = u. Solves in second
@alexjaeger3 жыл бұрын
Dejà-vu, I've just been in this place before...
@jameslalonde44203 жыл бұрын
Bro it always amazes me how you solve these abstract type integrals. Whenever I run into integrals like these I just jave no idea what to do but you make it look so simple. Good job
@MemyBurosi3 жыл бұрын
This vid needs to be watched over and over
@BriTheMathGuy3 жыл бұрын
Glad you think so!
@law265043 жыл бұрын
An amazing video man. Keep it up!
@BriTheMathGuy3 жыл бұрын
Thanks a ton!
@amirb7153 жыл бұрын
no need for gamma or beta function at all....it's much more simpler. @2:30 just let z=u/(1+u) then u=z/(1-z) and it becomes a simple algebraic integral.
@simon39wang433 жыл бұрын
This is absolutely amazing
@BriTheMathGuy3 жыл бұрын
glad you thought so!
@simon39wang433 жыл бұрын
@@BriTheMathGuy thanks, I subscribed
@gabitheancient76643 жыл бұрын
indeed, that is now my favourite integral, will save in my favorites omg
@edoardomartignoni32223 жыл бұрын
Frickin awesome indeed… 👍👍
@BriTheMathGuy3 жыл бұрын
Glad you thought so! Thanks for watching :)
@kjl30803 жыл бұрын
This looked so scary but if you think about the definition of the golden ratio in terms of the sides of a rectangle it’s no wonder why integrating it gives such a nice number
@jonathandambrosio46283 жыл бұрын
Great videos! So well made and fun to watch.
@BriTheMathGuy3 жыл бұрын
Glad you like them!
@RedTitan53 жыл бұрын
Wow... New info... Thank you for sharing...sir
@BriTheMathGuy3 жыл бұрын
So nice of you!
@jrcarlyon6803 жыл бұрын
Please please keep your hands still. Thanks so much🙏
@giuseppemalaguti4353 жыл бұрын
grande spiegazione..bravo
@YaBoyUneven2 жыл бұрын
I swear every time a problem turns out like that I get a mathgasm, there, I said it
@khaledchatah34252 жыл бұрын
WHAT THE ACTUAL FUCK. THAT WAS SO FKIN SATISFYING
@yurfwendforju9 ай бұрын
though I wont be able to remember in 2 minutes, it is indeed my favorite integral at the moment.
@Monkieteam3 жыл бұрын
I did by substituing for u = 1/(1+x^phi), after that there are some cancelations and the integral becomes very simple, without The need to know special functions. I would say however it is certainly more stylish to recognise the beta/gamma functions in there
@bhz89473 жыл бұрын
My math is very rough (what I remember from my C.S. degree), but integration has always seemed so ad hoc to me, like a collection of disjointed heuristics. Is it basically a tradeoff between the complexity of how we represent formulas vs. the complexity of the algorithm we use to integrate them?
@Павал-л8ч2 жыл бұрын
Like in proving theorems, there is probably no general algorithm in solving integrals analytically
@BernardBolanowski3 ай бұрын
at 1:52 x is just u^1/phi or a radical with index of phi
@miguelcerna74063 жыл бұрын
Fascinating. I'm fascinated.
@BriTheMathGuy3 жыл бұрын
Glad to hear it :)
@buzyparticals37532 жыл бұрын
When he said "pheee", I felt that
@SuperYoonHo2 жыл бұрын
sum intergral
@ishanagarwal7663 жыл бұрын
Mind= so blown even the quarks got split
@BriTheMathGuy3 жыл бұрын
🤯
@lukandrate9866 Жыл бұрын
Instead of using the beta function it is possible to just transform u^(φ-2)du into u^φ*d(-1/u), substitute t = -1/u and then it simplifies and we get what we wanted
@chimetimepaprika3 жыл бұрын
Dude, this year has been like math explosion festinghouse. Nice.
@aidenwinter11173 жыл бұрын
1:39 with respect to me? Never thought I’d get any respect at all 🥺
@Ben-rd3mg3 жыл бұрын
What a brilliant integral
@GlorifiedTruth3 жыл бұрын
Mind blown, but more in a makes me want to cry way. I need to brush up on my integrals!
@netanelkomm56363 ай бұрын
4:00 but how do you know that properties of factorials apply to non integer inputs?
@zahari202 жыл бұрын
Please do not confuse people! The beta function is written by B(x,y). Capital Greek beta.
@Nebulisuzer2 жыл бұрын
beta is ß not B
@holyshit9223 жыл бұрын
My way for calculating this integral Indefinite integral Int(1/(1+x^φ)^φ,x) can be quite easily integrated by parts Int(1/(1+x^φ)^φ,x)=Int((1+x^φ)/(1+x^φ)^φ,x)-Int(x^φ/(1+x^φ)^φ,x) Int(1/(1+x^φ)^φ,x)=Int(1/(1+x^φ)^(φ-1),x)-Int(x^φ/(1+x^φ)^φ,x) Now we can integrate Int(1/(1+x^φ)^(φ-1),x) by parts with u = 1/(1+x^φ)^(φ-1) and dv = dx After integration by parts we can add integrals we will get Int(1/(1+x^φ)^φ,x)=Int(1/(1+x^φ)^(φ-1),x)-Int(x^φ/(1+x^φ)^φ,x) Int(1/(1+x^φ)^φ,x)=x/(1+x^φ)^(φ-1)-Int(x*(-(φ-1)(1+x^φ)^(-(φ-1)-1))*φ*x^(φ-1),x)-Int(x^φ/(1+x^φ)^φ,x) Int(1/(1+x^φ)^φ,x)=x/(1+x^φ)^(φ-1)+Int(φ(φ-1)x^φ/(1+x^φ)^φ,x)-Int(x^φ/(1+x^φ)^φ,x) Int(1/(1+x^φ)^φ,x)=x/(1+x^φ)^(φ-1)+Int(φ*1/φ*x^φ/(1+x^φ)^φ,x)-Int(x^φ/(1+x^φ)^φ,x) Int(1/(1+x^φ)^φ,x)=x/(1+x^φ)^(φ-1)+Int(x^φ/(1+x^φ)^φ,x)-Int(x^φ/(1+x^φ)^φ,x) Int(1/(1+x^φ)^φ,x)=x/(1+x^φ)^(φ-1)+C If we want to calculate this integral using antiderivative we have to calculate the limit Now we need to calculate limit limit(x/(1+x^φ)^(φ-1),x=infinity) To calculate this limit all we need to do is some algebraic manipulations limit(x/(1+x^φ)^(φ-1),x=infinity)=limit(1/((1+x^φ)^(φ-1)/x),x=infinity) =1/limit(((1+x^φ)^(φ-1)/(x^(1/(φ-1))^(φ-1))),x=infinity) =1/limit((1+x^φ)^(φ-1)/x^(φ)^(φ-1),x=infinity) =1/limit(((1+x^φ)/x^φ)^(φ-1),x=infinity) =1/limit((1+1/x^φ)^(φ-1),x=infinity)
@Samir-zb3xk6 ай бұрын
An interesting fact that I realized from playing around with this integral is that Γ(φ+1)=Γ(1/φ) even though φ+1≠1/φ
@noyadishon66493 жыл бұрын
THIS IS SO COOL
@BriTheMathGuy3 жыл бұрын
😎😎😎😎
@Shreyas_Jaiswal2 жыл бұрын
Yes, now I can integrate any expression, just by introducing a new function. 😀😀
@geraltofrivia94242 жыл бұрын
This is beautiful
@threepointone4152 жыл бұрын
This is a very cool integral, but my favorite is probably the integral from -infinity to +infinity e^-x^2 dx, which comes out as √pi
@tusharchilling68863 жыл бұрын
I am amazed to see that mathematicians have come up with shortcuts for integration as well to save our time. Although I did not understand the technical stuff, I loved how this abstraction and clever substitution of beta function made this problem so beautiful. I remember studying gamma functions in my college. These are some college level concepts
@nandanmadhuj71723 жыл бұрын
I substituted x^(phi)=tan^2(theta). Nice problem.
@BriTheMathGuy3 жыл бұрын
Cool!
@TheTorturer6663 жыл бұрын
Favoritegral.
@BriTheMathGuy3 жыл бұрын
😎
@storeksfeed3 жыл бұрын
I literally just randomly googled this video lol. But I like it :)
@BriTheMathGuy3 жыл бұрын
Great to hear!
@ethanstrumwasser87983 жыл бұрын
awesome video as always! only thing wrong with them is that they end :P
@BriTheMathGuy3 жыл бұрын
Thanks! 😄
@dipayandasgupta75063 жыл бұрын
This was on cantor dust level 1…
@monx943 жыл бұрын
Nice!
@BriTheMathGuy3 жыл бұрын
Thank you! Cheers!
3 жыл бұрын
Make some videos about zeta function , please
@mathematicsmi3 жыл бұрын
kzbin.info/www/bejne/qZrdn5Vvqpqrnqs
@coast-guard-1cargo-spectio5523 жыл бұрын
(You should pay a fine for calling Phi, Fee.)
@BriTheMathGuy3 жыл бұрын
👮♂️
@chanderule6053 жыл бұрын
I mean, that's how every language but english calls it
@chjxb3 жыл бұрын
this is not maths but literature
@BriTheMathGuy3 жыл бұрын
🧐
@shanmugasundaram96883 жыл бұрын
I wonder the golden ratio has so many identities.
@PianoBounty Жыл бұрын
I don’t think you can actually use the factorial for non-natural numbers. Why not use the properties of the gamma function instead?
@tusharchilling68863 жыл бұрын
What if b is larger? It just makes b=0. And if b is 0, a should be a negative number? And also, a+b/b will tend to infinity which means a/b=infinity which just means a=0 x infinity But a is negative, right? The golden ratio formula has a contradiction
@tsan_jey3 жыл бұрын
I am watching this and pretend I understand everything after the word "integral."
@jatloe3 жыл бұрын
That was very cool :)
@BriTheMathGuy3 жыл бұрын
Glad you thought so :)
@elwind7623 жыл бұрын
I clickbaited because the differential variable wasn’t specified in the thumbnail :(
@BriTheMathGuy3 жыл бұрын
🥲
@sharpnova22 жыл бұрын
is it ok to undo the analytic continuation of factorials (namely Γ(x)) when your argument isn't a natural number? it'll usually work, but you'll need to stipulate caveats regarding the evaluation of factorials, enforcing their arrangement as quotients of successive or integer-modulo arguments to the factorial function. Γ(x) also has the property that Γ(x + n) = x^n * Γ(x). so you could have just evaluated that directly. very pretty problem. i hardly ever see people talk about β(x, y)
@aadilhasan83192 жыл бұрын
feynman’s technique for a parameter k in place of phi, so differentiating under the integral?
@Swaaaat13 жыл бұрын
At the beginning i thought this was an ex joke.
@catsarecool9773 Жыл бұрын
I hit the like button as soon as I heard you were pronouncing phi correctly LOL
@cheesecak118573 жыл бұрын
it's now my favourite integral lol
@alibekturashev62512 жыл бұрын
some people pronounce φ as phai and others as pheeh. which one should i use? i’m not an english speaker and i’m confused
@GuillermoMartinez-eq7kt5 ай бұрын
Great video! But a Gamma function is equivalent to its argument factorial only when the argument is an integer, which is not the case for Phi. Is this correct?
@kennethgee20042 жыл бұрын
ah what so the answer of one seem pretty reasonable because the integral of 1/x is ln x and the limit of (1+1/x)^x as x goes to infinity is e. The answer to ln e is 1. As an aside, 0! is not equal to 1 despite popular opinion. The gamma is not an exact answer for generalized factorials. The definition of factorial requires that the domain is the set of natural numbers. The gamma function is generalized in that it is an analytic continuation, but it loses meaning when things are more generalized.
@lukandrate9866 Жыл бұрын
Γ(1+n) = n! for all natural n Γ(1+0) = integral from 0 to inf of e^(-t) dt = 1 implies 0! = 1
@Fire_Axus3 ай бұрын
where is the video right here?
@simarjeetsingh25893 жыл бұрын
Yo the algorithm finally recommending some good channels!
@user-wx8bm1pg1d3 жыл бұрын
Damn it. I was hoping this didn't require a function I don't know of
@BriTheMathGuy3 жыл бұрын
There are other ways to do it!
@navsha2 Жыл бұрын
I guess that the golden ratio has infinite possibilities ( If you can change the value of the variables such as x)
@decreasing_entropy30033 жыл бұрын
Isn't Γ(x)=x! iff x belongs to the set of natural numbers? Here, φ is not a natural number, so shouldn't we not be using notion of factorial?
3 жыл бұрын
Where's the plot? I need a plot of the distro! Where is my plot!!
@alexandrepatrot5 ай бұрын
Nice video, but notice you should have employed the properties of Gamma rather than the factorial at the end of the calculations. Gamma(phi-1)= (phi-1)Gamma(phi-2) and the result follows. Observe that factorial emerges only for natural numbers which is not the case for phi.
@Dream-op5th3 жыл бұрын
How do you get that black background?...do you literally record it in a black planted rookm with a light on you?
@BriTheMathGuy3 жыл бұрын
Green screen :)
@joyli9893 Жыл бұрын
Golden integral
@fasihullisan30663 жыл бұрын
very nice
@BriTheMathGuy3 жыл бұрын
Glad you thought so!
@igvc18763 жыл бұрын
you might want to reconsider showing yourself in the picture.
@BriTheMathGuy3 жыл бұрын
What makes you say that? (genuinely asking)
@alperenerol18523 жыл бұрын
There is a famous saying, if there is a nasty integral the answer is a gamma or beta function.
@sethdon11003 жыл бұрын
If you love the Gamma Function, prove that gamma(z)*gamma(1-z)=pi/sin(pi*z) for all non integer z
@MaxBerson2 жыл бұрын
Shout out for pronouncing the Greek correctly!
@lapizuko Жыл бұрын
Instead of using some properties of the beta function which feels quite.. obscure I guess, you could've really proven that result by deriving the prof of that property in that specific case or something.
@NeagVasileNV-P Жыл бұрын
Hello! :) Could you tell me, please, the name of the software that you're using in the presentation? :) TY!
@thetruealex74783 жыл бұрын
Does this integral have a practical use?
@tamazimuqeria64963 жыл бұрын
New integral idea Int from -infinity to infinity (e^((-(x-m)^2)/(2(n)^2))dx
@rubenvela443 жыл бұрын
Golden triangle
@ZeroJingz3 жыл бұрын
am i the only one who didn't understand a thing but still watched till the end! 🤣