the best explanation in all internet. Thank you a lot
@nikeforo26123 жыл бұрын
Thanks for sharing. This is amazingly crafted and easy to follow. I finally understood the math behind LDA. Brilliant!
@tilestats3 жыл бұрын
Thank you! That's great to hear.
@ratnakarbachu29543 жыл бұрын
really you are genius and your help always remembered until my last breath.
@tilestats3 жыл бұрын
Thanks for your comment!
@快來快 Жыл бұрын
I like your video always with subtitles so i can better understand what are you saying
@KayYesYouTuber Жыл бұрын
Beautiful explanation. Thanks
@maydin342 жыл бұрын
Great explanation.
@44hyt Жыл бұрын
Excellent video!!!
@mrgomelonsolaris2 жыл бұрын
Very clear explanation!
@finansborsakanali28 күн бұрын
Hello Sir. Thanks for the video. at "18:12" we get LD1 from first eigenvector. Does Ld2 come from second eigenvector? Thanks for your answer in advance..
@tilestats27 күн бұрын
Yes
@gwendolyneortiz4152 Жыл бұрын
I went to the MANOVA video, and it said I needed to first understand the LDA video so now I am here, and now it says I have to go to the PCA video hehe
@ig555492 жыл бұрын
Thanks! This video is so helpful! Coffee on me :)
@tilestats2 жыл бұрын
Thank you!
@saifh.al-nimer28872 жыл бұрын
Thank you so much for this very useful video.
@tilestats2 жыл бұрын
Thank you!
@danialb9894 Жыл бұрын
Thank you for the video. Could you please make an extended video for LDA? I mean videos like what you did for PCA
@tilestats Жыл бұрын
Have you seen this one? kzbin.info/www/bejne/b4TYeniVqax5Y8k
@rekhapriya2178 Жыл бұрын
Your videos have been amazing, can you please upload content related to Bayesian analysis
@ritiksuri72487 ай бұрын
Can you please provide the dataset on which you worked
@tilestats7 ай бұрын
The data set is the same as shown in the video.
@hongdao93495 ай бұрын
How to calculate score from to matrix
@spp62611 ай бұрын
Hello sir, can you please explain why first eigen vector is considered for LDA?
@sergeypigida48342 жыл бұрын
Could you please check if the legend colors for bacterial and viral are correct on the figures (e.g. at 6:21)? With scikit-learn I get low values for bacterial and high values for viral data transformed samples. Therefore, viral data points, transformed with LDA, should be above the bacterial ones.
@tilestats2 жыл бұрын
What values did you get for alpha 1 and alpha 2, using scikit?
@sergeypigida48342 жыл бұрын
@@tilestats [-0.3627029 -2.3969302] import pandas as pd from sklearn.discriminant_analysis import LinearDiscriminantAnalysis import matplotlib.pyplot as plt data = pd.DataFrame({ "infection":["Viral","Viral","Viral","Viral","Viral","Viral", "Bacterial","Bacterial","Bacterial","Bacterial","Bacterial","Bacterial"], "crp":[40.,11.1,30.,21.4,10.7,3.4,42.0,31.1,50.,60.4,45.7,17.3], "temp":[36.,37.2,36.5,39.4,39.6,40.7,37.6,42.2,38.5,39.4,38.6,42.7]}) X, y = data[["crp","temp"]], data["infection"].ravel() lda = LinearDiscriminantAnalysis(n_components=1, store_covariance=True) X_t = lda.fit(X, y).transform(X) colors = ["red", "green"] plt.figure() for color, cls in zip(colors, lda.classes_): plt.scatter(["LDA"]*len(X_t[y==cls]), X_t[y==cls], alpha=0.8, color=color, label=cls) plt.legend() plt.show()
@sergeypigida48342 жыл бұрын
@@tilestats Hi Andreas, I managed to get the same picture as you. To do this I used the eigen solver (by default sklearn uses singular value decomposition). lda = LinearDiscriminantAnalysis(solver="eigen", shrinkage=0.003, n_components=1, store_covariance=True) Thank you for your
@tilestats2 жыл бұрын
Great!
@silesoul Жыл бұрын
Hello, thank you for the excellent explanation! So a variable contributes more to the groups' separation when it has a high weight. How do we interpret the negative weights of the variables (in LDA)?
@tilestats Жыл бұрын
Hi Use the absolute values for interpretation, which means that values far away from zero are important for separation.
@silesoul Жыл бұрын
@@tilestats Thank you !
@MariaMartinezGarcia-ky6ru Жыл бұрын
I greatly appreciate the video. I only have one question: Does this linear discriminant analysis approach rely on the Bayesian, Fisher or some other approach?
@tilestats Жыл бұрын
Well, the original discriminant analysis method was developed by Fisher, but note that LDA is not used to make any inference about a population (no p-value is calculated).
@MariaMartinezGarcia-ky6ru Жыл бұрын
@@tilestats Thank you for your response. That being said, I would like to know to which specific category or approach the method presented in the video could be associated. This is considering that its primary function is to classify known data, without conducting broader inferential analyses. Could you provide additional information on how this particular approach would be classified?
@tilestats Жыл бұрын
I would say that it is a classification method. Have a look at this video where I group LDA with other methods. kzbin.info/www/bejne/jn69kGOXodSJd8U
@jimjohnson3573 жыл бұрын
In your calculation of matrix W, when the sizes of the classes or groups is UNEQUAL, what are the variables n_1 and n_2? (i.e. in the equation shown at 15:43). Also, thanks so much for these videos (and the PCA ones). Well explained, with good examples and you did it in half the time everyone else takes!
@tilestats3 жыл бұрын
Thank you! n1 and n2 are the sample sizes of group 1 (group A) and group 2 (group B). In this example, you should set n1=6 and n2=6. Note that you should use the same formula at 19:22 if you like to normalize the weights when you have an unequal sample size.
@jimjohnson3573 жыл бұрын
@@tilestats Thanks very much... you guessed what my second question was going to be and answered it too! Looking forward to working my way through all your videos when I have some extra time.
@NN-if9lr3 жыл бұрын
@@tilestats what if we have 3 or more classes? should the denumerator still n1+n2 - 2? or it change to n1+n2 - 3 and so on?
@tilestats3 жыл бұрын
@@NN-if9lr Yes but n1+n2+n3-3
@NN-if9lr3 жыл бұрын
@@tilestats oh i forgot the n3, thank you for the reply.
@iwwyl8473 жыл бұрын
Hello! great video, however, I have a question/need clarification: is LD1 found at 18:19 the actual line, on which when projected upon best seperates the two classes? And then the following calculations in the video is the data being projected on the line, or is this line found somewhere else? So to clarify; im looking specifically for the line that best seperates the two classes
@tilestats3 жыл бұрын
The discriminant axis is given by the first eigenvector. If you like to plot the line on the centered data (unrotated data), plot the first eigenvector (0.15 0.989 or 0.11 0.7, both will give the same slope/direction of the line). Data points should project on this line.
@upanshisharma23132 жыл бұрын
hey can you tell me how you calculated 0.11 and 0.70?
@andreasjansson23662 жыл бұрын
It is explained later on in the video…
@paolopanlaqui98873 жыл бұрын
Hello! I would like to ask what the null hypothesis for LDA is or DA (Discrimination Analysis) in general? And also if you would know what the hypothesis is when MANOVA and DA together is used?
@tilestats3 жыл бұрын
LDA or DA has no null hypothesis because it does not compute any p-value, in comparison to MANOVA. When you use LDA you can use some sort of validation method to check its performance. Have you seen my second video about LDA and the video about MANOVA?
@ahmadalmomani15532 жыл бұрын
Thank you very much for these beneficial videos. However, you mentioned that you used software to calculate the Eigenvectors. Please recommend which software to use (the simpler, the better)? Again, thanks a lot for your videos
@tilestats2 жыл бұрын
Hi I use R, which is free! You can compute the eigenvectors in R by: mat=matrix(c(2.05,14.15,0.16,0.96),2,2) eigen(mat) Note that I also have videos on how to understand and calculate the eigenvectors by hand: kzbin.info/www/bejne/b3S3YZ2kmtJnrK8 kzbin.info/www/bejne/gKXGf5hjYsumr6M
@sunitharamcse3 жыл бұрын
How you assign alpha1 and alpha2 value?
@tilestats3 жыл бұрын
Do you mean how they are calculated? That is explained from 11:30.