this ia what we students call a osm techer .love this session .thank you so much sir .
@frazebean51177 ай бұрын
You're a legend man. I wish you all the best in your teaching journey cos you're gifted in it.
@nikhilgautam0073 жыл бұрын
Best video for understanding the time complexity of quick sort algorithm.😎👌👌
@rohithberavelli19415 жыл бұрын
perfectly done by quick sort with your video.thanks for your explanation
@giantpanda5044 жыл бұрын
when you analyze the worst case for quicksort, x is the smallest element as you said. so the n1 from Partitioning should be all bigger than x. But you wrote the symptom of
@jerrykayson41453 жыл бұрын
sorry to be offtopic but does someone know of a tool to log back into an instagram account?? I was dumb forgot my account password. I would appreciate any tricks you can give me.
@rivergus5013 жыл бұрын
@Jerry Kayson instablaster ;)
@jerrykayson41453 жыл бұрын
@River Gus I really appreciate your reply. I found the site through google and im trying it out now. Looks like it's gonna take quite some time so I will get back to you later with my results.
@jerrykayson41453 жыл бұрын
@River Gus It did the trick and I finally got access to my account again. I am so happy:D Thank you so much you saved my account :D
@rivergus5013 жыл бұрын
@Jerry Kayson glad I could help =)
@achronicstudent7 ай бұрын
I have question about 4:21 about drawing recursion tree. I always draw them like for each node, calculating the work done in this node. (as shown in Introduction to Algorithms 4th Leiserson Stein Rivest Cormen MIT Press p. 96) using this approach the recursion tree drawn should be n ---> cn, n-1--->c(n-1), n-2 ---> c(n-2), ... 1 ---> 1 but you draw it slightly different. I guess both approach gives the correct results for the example in p. 96 but i am not sure. Can you explain it a bit further?
@draaagoo7799 Жыл бұрын
Brilliant explanation!!
@debaratighatak22113 жыл бұрын
What an amazing explanation sir! Thank you :)
@prasannasasne814 жыл бұрын
at 11.46 you have mentioned the depth of the tree i.e log n to the base (10/9). can you please explain how you are calculating this depth?
@vivekmishra0074 жыл бұрын
@Prasanna Sasne In the case when the array is divided into 1/10 and 9/10 of the total size we have to consider the part of the recursion tree with the maximum height, the tree one part is getting divided by 10 and another part by 10/9 so as 10/9
@exploringnaturalbeauty21024 жыл бұрын
@@vivekmishra007 Damn thanks bro , lucid explanation to the point , I want to be in contact with you , so do you have an email where I can mail you if I have any doubt or we can stick to this KZbin comment section too.. Depends on your comfort Thanks !
@anurag91104 жыл бұрын
Nice explanation. Thanks
@shashipreetham28823 жыл бұрын
Splendid Explanation!
@hakan644911 ай бұрын
Good explanation
@naniscompass31732 жыл бұрын
What is the name for this teaching tool (colour pens)?
@picklerick31365 жыл бұрын
Thank you sir! Very inspiring!
@picklerick31363 жыл бұрын
@Dayton Taylor nobody will give a damn because it’s a scam
@picklerick31363 жыл бұрын
@Caden Jaiden yeah, and what a coincidence, you two both joined KZbin one week ago
@durgeshbhakta80084 жыл бұрын
Good explanation sir 👍
@jagannathanvijaylakshmi53853 жыл бұрын
Can u tell me which software is being used? I mean how to write with mouse.. sir..are u using any digital pen or something?
@vaishnaviyogendradere172 жыл бұрын
Great sir 👏👏
@sayantaniguha85193 жыл бұрын
So, Almost Best case is average case ?
@sanashoukat4772 жыл бұрын
make a video for heap sort.
@RahulGupta-rl8xd4 жыл бұрын
Thanks for help
@livingston82673 жыл бұрын
Amazing sir❤
@louerleseigneur45324 жыл бұрын
Thank you very much sir ji
@Arjunsiva4 жыл бұрын
That was very helpful
@hirafarman80113 жыл бұрын
great
@gabrielpereiramendes34634 жыл бұрын
#Excelent!
@Momo-hr2yd Жыл бұрын
Kosom the ziognist
@rafiqn26754 жыл бұрын
Bayya how to convert head recursion to tail recursion (tail call optimisation) please make video on it...
@aayushpagare93664 жыл бұрын
🙇🏻♂️
@uttamkarmakarece35343 жыл бұрын
❤️❤️❤️
@louerleseigneur45324 жыл бұрын
brovo
@uberboy69864 жыл бұрын
You cannot say that Quick Sort's time complexity is Big-oh of nlogn because it's not. Big-oh represent it's worst case and the worst case time complexity of quick sort is O(n²). To represent the average case you should use Big-Omega which is another symbol: Ω(n log n). Try not to explain difficult subjects to other people if you are not sure about it, it's hard to understand it and it gets even harder if many people say different things about it.
@redkai114 жыл бұрын
That is common misconception. Big-o does not represent its worst case and big-omega does not represent average case. Big-o is just the upper bound and big-omega is just the lower bound of time complexity. For worst case, quicksort is actually theta(n^2) so it is completely valid to say quicksort's time complexity is O(n^2) when we are considering the worst case. For best case, quicksort's time complexity is theta(nlog(n)) so it is, again, completely valid to say o(nlog(n)) or big-omega(nlog(n)).
@uberboy69864 жыл бұрын
@@redkai11 I'm talking about the part that he says that we can call it O(n log n) for the Quick Sort's time complexity ( 13:20 ).
@redkai114 жыл бұрын
@@uberboy6986 the time complexity of theta(nlog(n)) implies O(nlog(n)) so he is actually right?
@uberboy69864 жыл бұрын
@@redkai11 Theta(n log(n)) doesn't implies O(n log(n)). Quick Sort time complexity is O(n^2), Theta(n log(n)) and Omega(n log(n)). Google it.
@redkai114 жыл бұрын
@@uberboy6986 at this point, I am convinced that you don't know what theta is and its relation to big-o and big-omega. maybe try digging into google more and you will find that anything of theta(f(x)) is also O(f(x)) and big-omega(f(x))