Time Series Model Selection (AIC & BIC) : Time Series Talk

  Рет қаралды 57,836

ritvikmath

ritvikmath

Күн бұрын

Пікірлер: 67
@ResilientFighter
@ResilientFighter 4 жыл бұрын
Great job Ritvik. Seriously, you explain data science concepts EXTREMELY well.
@ritvikmath
@ritvikmath 4 жыл бұрын
Thanks a ton Gary!
@home7322
@home7322 3 жыл бұрын
@@ritvikmath you helped me with understanding a journal paper that I was reading. The python coding is so helpful for me as a beginner in this domain. I can easily analyse my data as soon as possible. Your are a superb teacher. I do appreciate your work.
@kevineotieno5
@kevineotieno5 8 ай бұрын
Bro, you are not only a great data scientist, but also a great teacher.
@omranhasan8287
@omranhasan8287 3 жыл бұрын
do you know how many papers I have read to understand those concepts and I couldn't, and here you come and made me not only understand them but be able to apply them is my thesis. thanks a lot.
@vadimkorontsevich1066
@vadimkorontsevich1066 2 жыл бұрын
you are the only one Indian lecturer and only the one econometrist, who I can understand with my bad english and my bed math background.
@samuelthomaz
@samuelthomaz 3 жыл бұрын
Man, I'm learning time series analysis and forecasting and you're helping me a lot !!! Thanks !!!!
@ritvikmath
@ritvikmath 3 жыл бұрын
Great to hear!
@aakuthotaharibabu8244
@aakuthotaharibabu8244 Жыл бұрын
after watching your videos it makes more sense that Data science is much about understanding Math's then after that we need to focus on coding part... awesome intrusion. thanks a lot
@niaz9391
@niaz9391 2 жыл бұрын
bro, your explanations are really smooth and easy to understand......
@arjunnvaja8361
@arjunnvaja8361 2 жыл бұрын
thank you!! I don;t know why professors in highly ranked university can not teach us like this. hats off!!
@riteshsingh811
@riteshsingh811 3 жыл бұрын
In India, we respect our teachers, elders by touching their feets and ask for their blessings. I feel like giving the same respect to you. Love from India ❤️
@abdullahalmoabadi3152
@abdullahalmoabadi3152 4 жыл бұрын
Thank you man, I was waiting for this video. If you can make another video which explains AIC & BIC in details that would be extremely helpful.
@ritvikmath
@ritvikmath 4 жыл бұрын
Noted! Thanks :)
@klelck
@klelck Жыл бұрын
Hey King, you dropped this 👑
@samyuktag4842
@samyuktag4842 Жыл бұрын
I love you for teaching it so simply
@ssaaajdijj
@ssaaajdijj 3 жыл бұрын
A simple explanation to understand AIC and BIC indeed. Thanks for that ritvik ! Can you please make a similar video to which gives a feel for, 1. log-likelihood. 2. significance of each evaluation parameters in different time series models.
@ritvikmath
@ritvikmath 3 жыл бұрын
thanks! please check out my max likelihood video here: kzbin.info/www/bejne/jICsmaatpquKjMU
@aleksandrserebryanskiy7253
@aleksandrserebryanskiy7253 2 жыл бұрын
What a nice explanation! Was looking for that for so long.
@luizscheuer670
@luizscheuer670 4 жыл бұрын
this video couldn't have been posted at a better moment. Currently writing my thesis on Uber travel times modelling and can't figure out which model to select. pls marry me no homo.
@ritvikmath
@ritvikmath 4 жыл бұрын
glad to help :)
@NickKravitz
@NickKravitz 4 жыл бұрын
My professor at NYU co-wrote a paper on developing the AICc (corrected AIC). Of course Bayes has better name recognition in stats. Great video as always!
@alexgeiger-h8z
@alexgeiger-h8z Жыл бұрын
Nice job getting to the point!
@ritvikmath
@ritvikmath Жыл бұрын
Glad it was helpful!
@Sparzzzzzzzzzzz
@Sparzzzzzzzzzzz 10 ай бұрын
underrated af! thanks man
@davidmacneill9686
@davidmacneill9686 Жыл бұрын
Thank you, great stuff!
@jonasschroder7244
@jonasschroder7244 2 жыл бұрын
Great explanation
@user-or7ji5hv8y
@user-or7ji5hv8y 4 жыл бұрын
Great explanation.
@ritvikmath
@ritvikmath 4 жыл бұрын
Glad it was helpful!
@MrTjurk
@MrTjurk 3 жыл бұрын
Thank you very much!
@ritvikmath
@ritvikmath 3 жыл бұрын
You're welcome!
@cleansquirrel2084
@cleansquirrel2084 4 жыл бұрын
Again! Amazing!
@VictorOrdu
@VictorOrdu 2 жыл бұрын
Fantastic!
@samuraibhai007
@samuraibhai007 4 жыл бұрын
Thank you so much Ritvik. Out of curiosity: as it pertains to time series, will you be covering Brownian motion and jump diffusions in future videos? Regardless - love your content!
@ritvikmath
@ritvikmath 4 жыл бұрын
Thanks! And I will definitely look into those topics
@prashantkumar-ue7up
@prashantkumar-ue7up 3 жыл бұрын
Great video.When should we use adjusted R square,AIB and BIC?
@shiwahashimi4326
@shiwahashimi4326 2 жыл бұрын
Thank you!
@admissionmoist5498
@admissionmoist5498 3 жыл бұрын
Why is AIC 2K-2L and not just K-L?
@viktoriiat.4403
@viktoriiat.4403 3 жыл бұрын
Hey, Ritvik! Thank you for the great content! Could you, please, make a video on State Space Models?
@irishryano
@irishryano 4 жыл бұрын
Great video! Very helpful and thorough explanation. For BIC, why do we want a lower number of samples? Conceptually, I thought more data points makes a better model. Can’t wait to catch up on rest of your videos I have not seen yet Cheers!!
@fpvfun676
@fpvfun676 3 жыл бұрын
Yes, we want more samples in general, but they have to contribute to better fit (increasing log likelihood) more than log of number of samples in order to be "BIC" better. As mentioned in the video if you have two models with same log likelihood, obviously the one trained on 1k samples is better than the one trained on 1M samples (and getting the same loglikelihood).
@al38261
@al38261 Жыл бұрын
Great!
@vivekkaushik1849
@vivekkaushik1849 3 жыл бұрын
Can there be a case where we have different model for AIC and BIC?. For instance, AR(6) gives the lowest AIC and AR(10) gives the lowest BIC. In this case which model will be taken into consider and why?
@pedrocolangelo5844
@pedrocolangelo5844 2 жыл бұрын
I'd be so glad if ritvikmath answers this question. This is exactly what I was thinking about.
@farnazmarianoshokrifard8446
@farnazmarianoshokrifard8446 2 жыл бұрын
Thanks a lot. So I have repeated measures and my models are nested. Would you then recommend BIC? I appreciate your help :)
@victorbotelho3609
@victorbotelho3609 4 жыл бұрын
Ritvik, since all models used the exact same amount of data points in the sample, the model with the lowest AIC would also be the model with the lowest BIC, correct? Does that mean that only the AIC is relevant when all models have the same amount of sample data?
@j.javiergalvez7934
@j.javiergalvez7934 3 жыл бұрын
I have the same question.
@Johnnyonthespot22
@Johnnyonthespot22 3 жыл бұрын
could you do some of these in Rstudio?
@luizscheuer670
@luizscheuer670 4 жыл бұрын
On question, though: what should I interpret out of the AIC if I apply it to just my stationary time series (i.e. 1st diff of the original time series) ? That is, with no AR, MA or other models yet applied to it? Would it make any sense?
@ritvikmath
@ritvikmath 4 жыл бұрын
good question. AIC/BIC are metrics we use on *models* not on raw data itself. So use these metrics if you are trying to decide between many models on the same set of data.
@jusjosef
@jusjosef 9 ай бұрын
Why is AR(10) chosen when AR(7) and AR(8) had more significant lags?
@paweszafaowicz6959
@paweszafaowicz6959 4 жыл бұрын
Hi! Very usefull video. What about if you make a video about this log likelihood. It seems not so intuitive and there is no much of material about this topic out there. Thanks!
@ritvikmath
@ritvikmath 4 жыл бұрын
Great suggestion! I've added it to my list :)
@tjbwhitehea1
@tjbwhitehea1 3 жыл бұрын
If the purpose of the modelling is to perform predictions, is it not better to evaluate the model on its ability to make predictions (i.e. with sliding windows k fold cross validation)? Rather than appraising the model on it's fit on data that it has already seen
@algerianman6417
@algerianman6417 3 жыл бұрын
plz the book you used making those videos
@vuhoangdung
@vuhoangdung Жыл бұрын
what AIC and BIC stand for?
@s.prakash7869
@s.prakash7869 3 жыл бұрын
Naice!!
@philipphabicht497
@philipphabicht497 4 жыл бұрын
Please do a more theoretical video about log likelihood
@mahdiziane575
@mahdiziane575 3 жыл бұрын
hi there @ritvikmath I WANT To confirm onething, about the AIC formula, isen't ''AIC=2K-2ln(L)'' the correct one instead of AIC=2K-2L. THANK YOU.
@tanvitolat9045
@tanvitolat9045 3 жыл бұрын
sir please explain ARCH GARCH model Assumption and limitation
@farooq8fox
@farooq8fox 3 жыл бұрын
epic
@roshedulalamraju7936
@roshedulalamraju7936 4 жыл бұрын
how you say the data is stationary when p value is zero? when p value is less than the value of 95% con int then we reject null hypothesis. so the data is not stationary
@siamakfarjami2116
@siamakfarjami2116 4 жыл бұрын
your null hypothesis would be the data is non-stationary, so if the p-value is less than 0.05 (5%), it means the null hypothesis is rejected and the data is stationary, so as here p-value is less than 5% , (zero) here then the data is stationary.
@colmanwong9060
@colmanwong9060 2 жыл бұрын
If they want to obtain the lowest of AIC, why don’t they represent the formula as k/l , they would give similar relationship
@tuguldurganbaatar4849
@tuguldurganbaatar4849 2 жыл бұрын
NotImplementedError: statsmodels.tsa.arima_model.ARMA and statsmodels.tsa.arima_model.ARIMA have been removed in favor of statsmodels.tsa.arima.model.ARIMA (note the . between arima and model) and statsmodels.tsa.SARIMAX. statsmodels.tsa.arima.model.ARIMA makes use of the statespace framework and is both well tested and maintained. It also offers alternative specialized parameter estimators. it says
@hameddadgour
@hameddadgour 2 жыл бұрын
Fantastic!
How To Get Stock Price Data with Python : Time Series Talk
4:21
Statistics 101: Multiple Regression, AIC, AICc, and BIC Basics
17:25
Чистка воды совком от денег
00:32
FD Vasya
Рет қаралды 4,8 МЛН
How Much Tape To Stop A Lamborghini?
00:15
MrBeast
Рет қаралды 256 МЛН
When Cucumbers Meet PVC Pipe The Results Are Wild! 🤭
00:44
Crafty Buddy
Рет қаралды 62 МЛН
Anomaly Detection : Time Series Talk
9:38
ritvikmath
Рет қаралды 66 М.
Time Series Talk : ARCH Model
10:29
ritvikmath
Рет қаралды 147 М.
Time Series Talk : Stationarity
10:02
ritvikmath
Рет қаралды 293 М.
Lesson47 Akaike Information Criterion
7:21
Biometry Online Lessons
Рет қаралды 90 М.
Model selection with AIC and AICc
13:21
TileStats
Рет қаралды 12 М.
GARCH Model : Time Series Talk
10:25
ritvikmath
Рет қаралды 164 М.
Evaluating model fit through AIC, DIC, WAIC and LOO-CV
11:20
Ben Lambert
Рет қаралды 22 М.
The Bayesians are Coming to Time Series
53:17
AICamp
Рет қаралды 26 М.
Learning at test time in LLMs
51:02
Machine Learning Street Talk
Рет қаралды 22 М.
Чистка воды совком от денег
00:32
FD Vasya
Рет қаралды 4,8 МЛН