Time Series Talk : Moving Average Model

  Рет қаралды 196,643

ritvikmath

ritvikmath

Күн бұрын

Пікірлер: 199
@yassineaffif5911
@yassineaffif5911 4 жыл бұрын
i wish my professor had explained it exactly like u just did
@chiquita_dave
@chiquita_dave 4 жыл бұрын
This was extremely helpful!! Between my 3 econometrics textbooks (Griffiths, Greene, and Wooldridge), the information on MA models was sparse. This really cleared up the mindset behind this model!
@lexparsimoniae2107
@lexparsimoniae2107 5 жыл бұрын
Thank you very much for making a vague concept so clear.
@yordanadaskalova
@yordanadaskalova 4 жыл бұрын
Never seen a better explanation of MA models. Immediate subscription!
@nicop175
@nicop175 4 жыл бұрын
Same here! I knew I would suscribe after 1 minute in the video. Very clear and very useful video. Thank you very much.
@vinayak_kul
@vinayak_kul 8 ай бұрын
Oh damm!! this is wonderful, Simplified and explained pretty nicely. Keep spreading you knowledge!!
@ritvikmath
@ritvikmath 8 ай бұрын
Thank you! Will do!
@wanjadouglas3058
@wanjadouglas3058 4 жыл бұрын
This was the best video on MA. The crazy prof made our life easier 😂😂😂
@alphabeta2723
@alphabeta2723 Жыл бұрын
This men's explanation is way better than those profs at University.
@rezvaneaghayan3129
@rezvaneaghayan3129 3 жыл бұрын
God Bless You! I needed a fast way to get some concepts on time series forecasting and you saved me. Easy, Fast, Complete.
@tiffanyzhang4805
@tiffanyzhang4805 3 жыл бұрын
Thank you so much for explaining this so well! My professor and textbook explain this concept very mathematically which is hard to understand for beginners, they should really give a simple example and then dive into the details as you did.
@ritvikmath
@ritvikmath 3 жыл бұрын
Glad it helped!
@m.raedallulu4166
@m.raedallulu4166 2 жыл бұрын
I really don't know how to thank you for that great demonstration! I've been trying to understand MA process for years!
@juanignaciox_
@juanignaciox_ Жыл бұрын
Wow! Great explanation. The professor´s example was very intuitive. Thanks for the content!
@chenwatermelon5478
@chenwatermelon5478 4 жыл бұрын
I was stuck where is the “error" term coming from. Now I know... it is the error from the past. You explained! I wish you were my professor.
@richardr951
@richardr951 2 жыл бұрын
Thank you Sir. You have a great way of explaining things, something I sadly rarely find from my coding/statistics teachers.
@rachelzhang9691
@rachelzhang9691 4 жыл бұрын
Thank you so much for making this fun video! Makes so much more sense now (after struggling through my not-so-crazy professor's stats class)
@akrovil06
@akrovil06 3 ай бұрын
Couldn't be expressed so handsomely! Thanks!
@lotushai6351
@lotushai6351 4 жыл бұрын
Thank you so much for your very intelligent explanation to this model!!! i felt so confused about this model before.
@plamenyankov8476
@plamenyankov8476 3 жыл бұрын
You are spectacularly GOOD in the explanation of the ARIMA! Cheers
@ritvikmath
@ritvikmath 3 жыл бұрын
I appreciate that!
@Manapoker1
@Manapoker1 Жыл бұрын
I was terrified for the mathematical symbols, but you made it so easy to understand! thank you!
@pastelshoal
@pastelshoal Жыл бұрын
Fantastic, got too caught up in the math in my macroeconometrics course and had no idea what these things actually were. Super helpful conceptually
@dboht4200
@dboht4200 Жыл бұрын
So simple yet easy to understand. Thank you!
@jhonmaya7264
@jhonmaya7264 4 жыл бұрын
a year trying to understand this, and I ve just needed 15 minutes thx!!
@shadrinan90
@shadrinan90 6 ай бұрын
Great explanation! I've learned everything that I looked for. Thank you.
@jahnavisharma1111
@jahnavisharma1111 3 жыл бұрын
ALWAYS GRATEFUL, THANK YOU FOR THE WONDERFUL CONTENT
@patricktmg4372
@patricktmg4372 5 жыл бұрын
Finally ❤️ a video with an applicable and relevant example ❤️🙏
@denisbaranoff
@denisbaranoff 4 жыл бұрын
This explanation gives better understanding why do we need avoid unit root in Time Series predictions
@wycliffebosire4114
@wycliffebosire4114 6 ай бұрын
Thank you so much, I have been reading this concept in an Econometric book...but this is easy to comprehend
@ritvikmath
@ritvikmath 5 ай бұрын
Glad it was helpful!
@deveshyadav9451
@deveshyadav9451 2 ай бұрын
Thanks for existing in this world bro.
@ritvikmath
@ritvikmath 2 ай бұрын
So nice of you
@jacobs8531
@jacobs8531 2 жыл бұрын
Simple Explanation is a Talent - Thanks for this
@lima073
@lima073 2 жыл бұрын
Simple and clear explanation, thank you !
@beatrizfreitas7363
@beatrizfreitas7363 2 жыл бұрын
Finally understood this, thank you so much. Highly recommend!
@wolfgangi
@wolfgangi 4 жыл бұрын
I still don't think this makes sense to me why is incorporating past error somehow gives us better prediction in the future in this case. Since this crazy professor will randomly choose an acceptable # of cupcakes, your past error shouldn't help in better predicting in the future.
@vitorgfreire
@vitorgfreire 4 жыл бұрын
I think the student naively believes the crazy professor will stick to his prior t-1 position (the student is unaware of the professor's craziness)
@jeongsungmin2023
@jeongsungmin2023 8 ай бұрын
Everything in time series assumes that you can use past info to predict future info
@marzi869
@marzi869 8 ай бұрын
Event though the professor selects a different number every time, at the end the average is stable. Assume you have a time series of images. Images, due to the unstable environment they're taken in or all other factors that manipulate images nature, are not always the same, although they are taken from the same scene. So, what is the goal here ?to find the mutual information in the images and ignore the noises. These noises are how crazy professor is , and the importance of error, which we can handle by its coefficient. By handling these factors, we can get close to recognising the mutual information. Remember, these are unsupervised models. There are no lable to rely on.
@YumekiMDK
@YumekiMDK Жыл бұрын
OMG, this is brilliant , amazing ,wonderful ,thank you
@gemini_537
@gemini_537 5 ай бұрын
Gemini 1.5 Pro: This video is about moving average model in time series analysis. The speaker uses a cupcake example to explain the concept. The moving average model is a statistical method used to forecast future values based on past values. It is a technique commonly used in time series analysis. The basic idea of the moving average model is to take an average of the past observations. This average is then used as the forecast for the next period. There are different variations of moving average models, and the speaker introduces the concept with moving average one (MA1) model. In the video, a grad student is used as an example. The grad student needs to bring cupcakes to a professor's dinner party every month. The number of cupcakes the grad student should bring is the forecast. The professor is known to be crazy and will tell the grad student how many cupcakes he thinks were wrong each month. This is the error term. The moving average model is used to adjust the number of cupcakes the grad student brings based on the error term from the previous month. The coefficient is a weight given to the error term. In the example, the coefficient is 0.5, meaning the grad student will adjust the number of cupcakes he brings by half of the error term from the previous month. For example, if the grad student brings 10 cupcakes in the first month, and the professor says the grad student brought 2 too many, then the grad student will bring 9 cupcakes in the second month (10 cupcakes - 0.5*2 error term). The video shows how the moving average model works through a table and graph. The speaker also mentions that there are other variations of moving average models, such as moving average two (MA2) model, which would take into account the error terms from two previous months.
@JJ-ox2mp
@JJ-ox2mp 3 жыл бұрын
Great explanation. Keep up the good work!
@urielnakach4973
@urielnakach4973 4 жыл бұрын
Explained with the Cup Cakes it makes perfect sense, thumbs up!
@haiderwaseem7188
@haiderwaseem7188 2 жыл бұрын
Great video. I think the calculation of the 3rd row is wrong. It should've been 9+0.5 = 9.5
@abhradeblaskar9666
@abhradeblaskar9666 2 жыл бұрын
No.. Constant term is 10 not 9
@thesofakillers
@thesofakillers 4 жыл бұрын
How is the average moving though? It was fixed for each prediction! Wouldn't it have to be recalculated each time for it to be moving? Also we didn't seem to use anything related to the error being normally distributed... is there a reason for that? why was it mentioned in the first place?
@ravikumarhaligode2949
@ravikumarhaligode2949 3 жыл бұрын
Exactly right, I am also having same query, Average not moving
@ravikumarhaligode2949
@ravikumarhaligode2949 3 жыл бұрын
Did you get any other source where this explained clearly
@TehWhimsicalWhale
@TehWhimsicalWhale 3 жыл бұрын
How do we know what the "error" is there is if there is no "true value" given a random realization of data.
@pepesworld2995
@pepesworld2995 3 жыл бұрын
the idea is that you're trying to predict the next value. you get told what the next value is by the professor. if its random then there is no signal in there & the results are still meaningless
@K_OAT
@K_OAT 3 жыл бұрын
Nice example super easy to understand the concept!
@hakkin9787
@hakkin9787 5 жыл бұрын
Thanks man. You're doing a suberb job.
@paulbearcamps
@paulbearcamps Жыл бұрын
Exceptionally useful videos for actuarial exams. Thanks for helping me pass🙂(hopefully)
@MrPyas
@MrPyas 3 жыл бұрын
Had I watched your series earlier would have saved me $3000 :(
@shaporovanatalia6805
@shaporovanatalia6805 3 ай бұрын
perfect explanation. Thank you!
@Sylar1911
@Sylar1911 3 жыл бұрын
I love this video, so simple but effective
@sohailhosseini2266
@sohailhosseini2266 2 жыл бұрын
Great video! Thanks for sharing!
@siddhant17khare
@siddhant17khare Жыл бұрын
Does MA model assume et (lagged residuals) are pure white noise ? Mean =0, constant variance , and no autocorrelation of residuals ?
@emreyorat803
@emreyorat803 Жыл бұрын
Manyt thanks for your clear explanation of the mathematical moving average formula
@ritvikmath
@ritvikmath Жыл бұрын
of course!
@matejfoukal9994
@matejfoukal9994 Жыл бұрын
Let's use an example that is sligtly more natural to us -- so here's this crazy professor. :D
@yuanyao972
@yuanyao972 3 жыл бұрын
this is really helpful and so easy to understand!!!
@tsetse4327
@tsetse4327 2 жыл бұрын
Thank you very much! Such a clear explanation!
@clapdrix72
@clapdrix72 3 жыл бұрын
Extremely well explained
@noeliamontero3839
@noeliamontero3839 2 жыл бұрын
Thanks!!! Perfect explanation :)
@jayjayf9699
@jayjayf9699 3 жыл бұрын
How come some MA(1) formulas have x_t = mu + (phi1) error_t + (phi2) error_t-1..... If you predicting at time t then how would you know error at time t (error_t), why are some formulas like this?
@zairacarolinamartinezvarga1070
@zairacarolinamartinezvarga1070 3 жыл бұрын
LOVE IT. Thank you.
@ritvikmath
@ritvikmath 3 жыл бұрын
Of course!
@yuthpatirathi2719
@yuthpatirathi2719 5 жыл бұрын
Amazing explanation man
@yvesprimeau6031
@yvesprimeau6031 5 жыл бұрын
So not natural.. it is why you are so good in teaching
@jubaerhossain1865
@jubaerhossain1865 4 жыл бұрын
Hi, great explanation! One question, how do you guess the mu value (the average cupcake you bring) for the fist time?
@tomasw8075
@tomasw8075 4 жыл бұрын
Brilliant explanation, thank you!
@ZakharovInvest
@ZakharovInvest 4 жыл бұрын
Great videos, thank you! I have a question. Period 1 value is our mean value but we don't know what is mean since we just started from point 0. How to calculate residual then? We know the true observation and we don't know the mean. Is it just a guess? But when we use any statistical package it does not ask us to input guess mean value.
@erickmacias5153
@erickmacias5153 2 жыл бұрын
Thanks you so much.
@manojsebastian2000
@manojsebastian2000 3 жыл бұрын
Great Presentation...
@ritvikmath
@ritvikmath 3 жыл бұрын
Glad you liked it!
@sirabhop.s
@sirabhop.s 3 жыл бұрын
Greatly explain!!! Thanks
@fksons4161
@fksons4161 4 жыл бұрын
God Bless you.
@swiftblade168
@swiftblade168 2 жыл бұрын
Excellent explanation
@barnabas4608
@barnabas4608 4 ай бұрын
Fantastic!
@jacksonchow3359
@jacksonchow3359 4 жыл бұрын
how do we find the coefficient for the moving average model?
@pierremangeol4387
@pierremangeol4387 2 жыл бұрын
Algorithms use the entire time series to get as close as possible to the true value of the coefficient (often with a maximum likelihood estimator).
@vivekkumarsingh9009
@vivekkumarsingh9009 5 жыл бұрын
Where does the noise in the equation come from? In our data we only have time on the x axis and Y as the target variable. There is no error term. What I mean to ask is does the MA model first regress y on y lag terms like the AR model and then calculate error between the actual and predicted y terms? Then regress y against the calculated error terms(residuals)?
@manuelcaba2
@manuelcaba2 4 жыл бұрын
The error is a white noise coming from random shocks whose distribution is iid~(0,1). Ftting the MA estimates is more complicated than it is in autoregressive models (AR models), because the lagged error terms are not observable. This means that iterative non-linear fitting procedures need to be used in place of linear least squares. Hope this helps :).
@ravikishore331
@ravikishore331 4 жыл бұрын
Great explanation! Third row shouldn't it be 9.5 rather than 10.5?
@wenzhang5879
@wenzhang5879 3 жыл бұрын
No, 10+1/2=10.5
@ravikishore331
@ravikishore331 3 жыл бұрын
@@wenzhang5879 Yeah, got it. Thanks
@krishnabarfiwala5766
@krishnabarfiwala5766 3 жыл бұрын
Amazing explaination
@shei9413
@shei9413 4 жыл бұрын
Thank you for the video, how should we choose the 0.5 coefficient in front of the error term from last period in the regression model?
@FlashBall-y4f
@FlashBall-y4f 8 ай бұрын
thanks! Really helpful
@tancindy2390
@tancindy2390 4 жыл бұрын
you are just amazing
@Ivorforce
@Ivorforce 4 жыл бұрын
I don't really get the model. Let's say I have a non-crazy professor, that always wants 8 cupcakes. My mean is 10, so by default I always bring 10. So in order: I bring 10, error = -2 I bring 8, error = 0 I bring 10, error = -2 I bring 8, error = 0 The model doesn't take into account that the error was based on the last base value, not the current. Wouldn't a good moving average mean I want to bring mean(f(x - y) for y in 0...YS), where YS is the order of the moving average? Then I always bring the perfect amount for non-crazy professors, and for crazy ones I just increase YS to something meaningful.
@nathanzorndorf8214
@nathanzorndorf8214 2 жыл бұрын
Great video. Do you always start with the mean as your first guess for f hat? Also, how do you fit an MA(q) model?
@jacqueline190
@jacqueline190 2 жыл бұрын
THANK YOU SO MUCH
@Raven-bi3xn
@Raven-bi3xn 4 жыл бұрын
Why in some models the prediction (f hat) is the average of the previous f values. But in some models, it is the error of the previous models that predict f hat.
@HardLessonsOfLife
@HardLessonsOfLife 3 жыл бұрын
I have the same doubt, sometimes he added the half of the error to f ,and sometime to f-hat
@fmikael1
@fmikael1 3 жыл бұрын
how is it possible you can explain this stuff so easily!
@nichoyeah
@nichoyeah 2 жыл бұрын
Really good explaination! Maybe I'm stupid for asking this... If one was to write an MA filter, how do you determine M?
@khalilboughzou3092
@khalilboughzou3092 3 жыл бұрын
Hey amazing Content Bravo ! Can you add to that a video talking about random walk ? That would be great .
@alisadavtyan2133
@alisadavtyan2133 2 жыл бұрын
Hi. The mean of et is not 0. For time interval 5, you need to write -1.
@niveditadas2372
@niveditadas2372 4 жыл бұрын
Wonderful example.
@ritvikmath
@ritvikmath 4 жыл бұрын
thanks!
@stanleychen6710
@stanleychen6710 4 ай бұрын
does miu have to be a constant? can we use a rolling window to calculate the average? will this yield better predictions?
@matejzadny8421
@matejzadny8421 2 ай бұрын
Hello, thanks for this video, but i Wonder about \theta_0. Could it be something different than 1?
@RD-zq7ky
@RD-zq7ky 4 жыл бұрын
What does it mean when the MA(1) estimated parameter = 1? For AR(1) that would mean there's a unit root. Any particular corollary for MA models?
@rishansarma7413
@rishansarma7413 Жыл бұрын
Thank you❤❤❤
@THUYBui-dx2uc
@THUYBui-dx2uc 5 жыл бұрын
Thank you so much for making this video. I am so frustrate to understand this concept :(
@jessicaleka1848
@jessicaleka1848 4 жыл бұрын
sameee
@maydin34
@maydin34 5 жыл бұрын
Perfect!
@lorenzo3062
@lorenzo3062 3 жыл бұрын
You can see how the crazy professor gets hungrier month by month
@alexcombei8853
@alexcombei8853 3 жыл бұрын
@L.-..
@L.-.. 4 жыл бұрын
Hi... I have one doubt.. shouldn't you have plotted the values for ft^ instead of ft in the graph? P.S: Thank you for taking the time to make these videos. It's really helpful.
@isabellaexeoulitze6544
@isabellaexeoulitze6544 4 жыл бұрын
I was about to ask the same thing but I don't think the instructor responds to questions.
@L.-..
@L.-.. 4 жыл бұрын
@@isabellaexeoulitze6544 yeah.. I kinda expected that since it's a old video.. nevertheless the commented my doubt, hoping that someone else watching the video might clarify...
@chandrasekarank8583
@chandrasekarank8583 4 жыл бұрын
Like he drew the ft line for showing that the time series data is kind of like centered around the mean , but even I have a doubt that why didn't he also draw predicted ft along with real ft
@edavar6265
@edavar6265 2 жыл бұрын
This is a great explanation but in many equation they also add the current error (epsilon_t). I just don't get how are we supposed to know our current error if we are trying to forecast a value. Do we simply neglect that current equation for forecasting?
@tallblondedude
@tallblondedude 2 ай бұрын
damn u a real one for this
@vignesharavindchandrashekh6179
@vignesharavindchandrashekh6179 4 жыл бұрын
what is the difference between taking the average of first 3 values and calculating the centered average at time period 2 and this method(average+error t+ error at previous time period)
@wenzhang5879
@wenzhang5879 3 жыл бұрын
What you are describing is MA smoothing, which is used to describe the trend-cycle of past data
@SS-xh4wu
@SS-xh4wu 3 жыл бұрын
Thank you. Love your video tutorials! Just one question: shouldn't the curve at 5'58'' be f_t? And c(10,9,10.5,10,11) be f_(t-1)?
@Maciek17PL
@Maciek17PL 2 жыл бұрын
How can I use such a model for forecasting?? I can forecast for one day into the future but how about 2 or more days into the future?
@GauravSharma-ui4yd
@GauravSharma-ui4yd 5 жыл бұрын
Sir please make videos on restricted Boltzmann machine
@yonathanyak
@yonathanyak 4 жыл бұрын
This looks like exponential smoothing. Please correct me if I'm wrong!
@katakouzina
@katakouzina 4 жыл бұрын
no. not the same.
@taylerneale7250
@taylerneale7250 3 жыл бұрын
Thanks this is a really clear explanation. My only question is when you are calculating your f_t column, why are you including the error from the current time period? Shouldn't you only be including the 0.5*e-t-1?
@nikhilchowdhary8919
@nikhilchowdhary8919 2 жыл бұрын
you are too good
@sshao633
@sshao633 2 жыл бұрын
Should it be 9.5 instead of 10.5?
MA Model Code Example : Time Series Talk
8:05
ritvikmath
Рет қаралды 39 М.
Time Series Talk : Moving Average and ACF
9:02
ritvikmath
Рет қаралды 100 М.
Thank you Santa
00:13
Nadir Show
Рет қаралды 35 МЛН
كم بصير عمركم عام ٢٠٢٥😍 #shorts #hasanandnour
00:27
hasan and nour shorts
Рет қаралды 11 МЛН
Can You Find Hulk's True Love? Real vs Fake Girlfriend Challenge | Roblox 3D
00:24
Time Series Talk : Autoregressive Model
8:54
ritvikmath
Рет қаралды 337 М.
Time Series Talk : Stationarity
10:02
ritvikmath
Рет қаралды 292 М.
Time Series Talk : ARIMA Model
9:26
ritvikmath
Рет қаралды 341 М.
I never understood why you can't go faster than light - until now!
16:40
FloatHeadPhysics
Рет қаралды 4 МЛН
Time Series Talk : Autocorrelation and Partial Autocorrelation
13:16
Time Series Talk : ARCH Model
10:29
ritvikmath
Рет қаралды 147 М.
1.12 Time Series- moving averages
8:59
Maths Doctor
Рет қаралды 39 М.
Teach me STATISTICS in half an hour! Seriously.
42:09
zedstatistics
Рет қаралды 2,8 МЛН
An introduction to Moving Average Order One processes
8:08
Ben Lambert
Рет қаралды 147 М.
Is the Future of Linear Algebra.. Random?
35:11
Mutual Information
Рет қаралды 361 М.