Titanic Survival Prediction in Python - Machine Learning Project

  Рет қаралды 112,980

NeuralNine

NeuralNine

Күн бұрын

Пікірлер: 113
@timvielhauer1231
@timvielhauer1231 Жыл бұрын
The latest pandas version is not ignoring string values in the .corr function anymore. just add "numeric_only=True" and it will work again
@ronie-i1q
@ronie-i1q Жыл бұрын
thank you so much! i was looking how to resolve this issue
@hk6926
@hk6926 8 ай бұрын
People who are dump like me , here what it means :) sns.heatmap(train_data.corr(numeric_only='True'), cmap='YlGnBu')
@crux_X_shh
@crux_X_shh 8 ай бұрын
Thank you so much bro I was trying to solve this for 2 days continuously and nothing worked..🥹
@moody_moony123
@moody_moony123 6 ай бұрын
thank you life saver!
@white-ts5np
@white-ts5np 20 күн бұрын
import seaborn as sns sns.heatmap(titanic_data.corr(numeric_only=True), cmap="YlGnBu") plt.show()
@saya5664
@saya5664 2 жыл бұрын
Great tutorial video! helped me to understand how pipeline in ML works, hope there will be more Kaggle competition walkthrough like this from you soon! :)
@muratsahin1978
@muratsahin1978 2 жыл бұрын
I was pretty confused when I saw %100 accuracy lol, thanks for the explaining.
@MohammedAhmed-y9r
@MohammedAhmed-y9r 5 ай бұрын
I knew it was cheating right away especially that the data contains the specific names of the people in the titanic
@paralogyX
@paralogyX 2 жыл бұрын
Good video, but: 1) What was a purpose of test set? You didn't use for your model estimation and you used cross-validation. 2) You shouldn't fit StandardScaler on Kaggle Test Set, but only transform on the same scaler you used for training data, because if features distributed a bit different, then scaling will be different and your model will get different numbers for exactly similar passenger. Would be nice if you pay attention to these details, because they are really important. But generally, video is nice and useful.
@jaysoncastillo2593
@jaysoncastillo2593 Жыл бұрын
Got the same comment. Test set shouldn’t be fitted anymore but only transformed.
@jaysoncastillo2593
@jaysoncastillo2593 Жыл бұрын
Do you know any yt channel solving the titanic dataset for reference?
@JunaidAnsari-my2cx
@JunaidAnsari-my2cx 4 ай бұрын
@@jaysoncastillo2593 Did u find anything?
@benjamindeporte3806
@benjamindeporte3806 2 жыл бұрын
Nice "real life" example of the scikit pipeline. Helped me a lot, thanks.
@jaym0ney_
@jaym0ney_ 2 жыл бұрын
This is a great video, I’ve been trying to find a good place that would show the code behind creating a basic ML pipeline, or show some beginner feature engineering and whatnot, but I haven’t found anything as straightforward as this. A lot of other people have a lot of fluff in their tutorials, but you just show it straight up, which I really appreciate. Do you have any recommendations for textbooks/articles for a beginner wanting to get into Machine Learning? I have a strong math/programming background, so that’s not an issue, I just need something that will comprehensively explain all the main components of making an ML project. Thanks in advance and keep up the good work!
@shashvatsinghal2574
@shashvatsinghal2574 Жыл бұрын
This is the best video i have ever watch on datascience and ml till date
@cryptigo
@cryptigo 2 жыл бұрын
This is actually such a good idea. A lot of python program / resume ideas are boring. Thanks!
@statistikochspss-hjalpen8335
@statistikochspss-hjalpen8335 Жыл бұрын
11:45 You can't use Pearson correlation coefficient for nominal/ordinal data. 12:49 you need to create dummy variables for each class.
@unfff
@unfff Жыл бұрын
Hey, I see he addresses the Pearson correlation coeffecient issue later on where he uses One Hot Encoding to turn the data from ordinal to discrete. Is there a better way to visualize correlation even when you use this method? Or would doing the one hot encoding first and then doing the correlation heat map be best practise?
@statistikochspss-hjalpen8335
@statistikochspss-hjalpen8335 Жыл бұрын
@@unfff doing one hot encoding and choosing the right correlation coefficient are two separate things. One hot encoding has nothing to do with correlation analysis. One hot encoding is just a transformation of a variable that can be used for multiple purposes.
@Summer-of8zk
@Summer-of8zk Жыл бұрын
to fix the fact corr() doesnt work with words, then you can do "df.corr(numeric_only=True)". where df is your data, and that will give the corr for your data but you do lose the non integer data coiumns.
@statistikochspss-hjalpen8335
@statistikochspss-hjalpen8335 Жыл бұрын
@@Summer-of8zkYou are talking about a technical solution. What do you mean by if it doesn't work? Every statistical software will produce a correlation coefficient as long as your columns have some digits in it. I'm talking about what's theoretically (in)correct.
@valentinmagis6743
@valentinmagis6743 Жыл бұрын
Why are you scaling the variables when using a tree-based model? Scaling is done to Normalize data so that priority is not given to a particular feature. Scaling is mostly important in algorithms that are distance based and require Euclidean Distance. Random Forest is a tree-based model and hence does not require feature scaling.
@soorajsridhar3279
@soorajsridhar3279 Жыл бұрын
I followed the code as said in the video and came across an error when we fit_transform with the strat_test_set. The error was that the 'Embarked' column was missing. I think it is because we drop it in featuredropper function, but in the pipeline as we process it all over again , I guess we get this error. Can you help me fix it asap???
@yogeshchoudhary1414
@yogeshchoudhary1414 Жыл бұрын
I got the same error too
@rachelalam560
@rachelalam560 Жыл бұрын
Me too
@binglinjian2324
@binglinjian2324 Жыл бұрын
maybe that's because you run that part of code multiple times? I restart and run all the code, it works fine.
@jeeaspirant7890
@jeeaspirant7890 7 ай бұрын
​@@binglinjian2324please tell how to fix this 😢
@aryanarvindsingh1838
@aryanarvindsingh1838 5 ай бұрын
I got the same error too
@jomp6141
@jomp6141 8 ай бұрын
Man your video was awesome. Easy to follow and replicate, plus you explain the key insights for those of us who have only a little knowledge of data analysis. Thanks a lot!
@paulbuono5088
@paulbuono5088 Жыл бұрын
Interesting where at 15:10 you said you don't want to look too much at your training set so you don't get biased. It seems everyone else I hear says to examine it as much as possible....is there something I'm misinterpreting from you or them?
@alimemon9942
@alimemon9942 10 ай бұрын
He said testing dataset not the training dataset.
@tgmbrett
@tgmbrett 2 жыл бұрын
at 32:00, how is he calling stat_train_set in the pipeline.fit_transform function when the variable doesnt exist yet?
@90cijdixke
@90cijdixke Жыл бұрын
Did u find the answer?😬
@sayuri_20
@sayuri_20 8 ай бұрын
@@90cijdixke Did you find yet ?
@emmaoye2704
@emmaoye2704 Жыл бұрын
Am i the only one Stuck at 32:31. i keep getting this error: AttributeError: 'FeatureEncoder' object has no attribute 'transform'
@aidaosmonova4798
@aidaosmonova4798 Жыл бұрын
could you solve this?
@lemanosmanli2006
@lemanosmanli2006 7 ай бұрын
@@aidaosmonova4798 hi could you solve it?
@jeeaspirant7890
@jeeaspirant7890 7 ай бұрын
Please tell how to fix this
@RivinduBRO
@RivinduBRO 5 ай бұрын
thankyou very much for this tutorial cuz i was like mentally down as i got 0.75 accuracy at my first try and also there were many people with 1.0 accuracy. so i was thinking why i can't. but now i understood the thing. thankyou soo much for this lesson.
@jeremyheng8573
@jeremyheng8573 2 жыл бұрын
Thank you for great tutorial! Do you have more Kaggle competition walkthrough?
@vivekthumu8992
@vivekthumu8992 Жыл бұрын
Thank u so much for providing this video helped me to understand a lot
@shanondalmeida7235
@shanondalmeida7235 Жыл бұрын
Correlation doesn't work for string values hw u did it ? 🤔
@Dan-mm9yd
@Dan-mm9yd 9 ай бұрын
Same problem
@lemanosmanli2006
@lemanosmanli2006 7 ай бұрын
@@Dan-mm9yd numeric_only=True
@yashtysingh1171
@yashtysingh1171 Жыл бұрын
Sir my updated sklearn version doesn't have fit_transform.. Please guide what should I do!
@aflahalabri6331
@aflahalabri6331 11 ай бұрын
I don't think there was a need for creating the AgeImputer class at least in the latest versions, probably using the SimpleImpute class directly is sufficient. But it's good learning tip on how to create a custom class.
@Warclimb64
@Warclimb64 7 ай бұрын
had a problem here 42:05 I solved only selecting numeric: X_test_numeric = X_test.select_dtypes(include=[np.number])
@SaurabhSah-x7w
@SaurabhSah-x7w 5 ай бұрын
bro how did you solved the problem which is in timeline 32:00 🙄
@SaurabhSah-x7w
@SaurabhSah-x7w 5 ай бұрын
can you help me with you code that you solved
@Warclimb64
@Warclimb64 5 ай бұрын
@@SaurabhSah-x7w Yeah sure, i dont remember right now, but i will check my code tomorrow and write you back
@pravachanpatra4012
@pravachanpatra4012 2 жыл бұрын
Can you make a tutorial on an AI that plays a game using the NEAT module in python and pygame???
@supremenp
@supremenp Жыл бұрын
sns.heatmap(titanic_data.corr(), cmap="YlGnBu") plt.show() This gives error: could not convert string to float: 'Braund, Mr. Owen Harris' shouldn't the titanic_data.corr() drop the string columns automatically?
@heisgiovann
@heisgiovann Жыл бұрын
How did you solve this error?
@unfff
@unfff Жыл бұрын
Do sns.heatmap(titanic_data.corr(numeric_only=True),cmap="YlGnBu") instead of sns.heatmap(titanic_data.corr(),cmap="YlGnBu") in 11:50 as I assume it defaulted to True when this video was made and was later made not to. This is because that correlation function can't figure out the correlation between anything not quantitative so you have to tell the function to only look at numerical features.
@TheShakour
@TheShakour Жыл бұрын
@@unfff tnx bro... it helped
@sushre10
@sushre10 9 ай бұрын
yes this same error exist to me also
@mahis7232
@mahis7232 9 ай бұрын
@@unffftysm 🥰
@wasgeht2409
@wasgeht2409 2 жыл бұрын
Thank you... I have one question, why u pick this models ? On which KPI based you choice your models for any kinds of problems. That will be a very interesting for me
@MohammedAhmed-y9r
@MohammedAhmed-y9r 5 ай бұрын
Why did you fit your pipeline on the test.csv data
@fizipcfx
@fizipcfx 2 жыл бұрын
This is strange but, if you add the name length as a column it helps. The name length has 0.332350 correlation with the Survived column :)
@paralogyX
@paralogyX 2 жыл бұрын
Correlation is not causation. Very good example!
@armantech5926
@armantech5926 Жыл бұрын
Great Video, thank you!
@mertmunuklu7732
@mertmunuklu7732 11 ай бұрын
Thanks, it is a great tutorial
@TheErick211_
@TheErick211_ 9 ай бұрын
Can we download your jupyter notebook from somewher?
@philjoseph3252
@philjoseph3252 9 ай бұрын
Is there a difference between hit encoding in pandas and sklearn? The process is so much easier with pandas, is there a particular reason why he used sklearn?
@Vikraman99
@Vikraman99 4 ай бұрын
The Embarked column in the test set has no N value and I am not able to use your pipeline code because of it. Is there a way to overcome this?
@Vikraman99
@Vikraman99 4 ай бұрын
Ok got it, I didn't write error="ignore' in Feature Dropper section.
@ChristianA.Bradna
@ChristianA.Bradna 6 ай бұрын
I am confused as to when I should use fit_transform and when I should use transform only. Previously, I understood that when you sing the former, you are calibrating, so to speak, to the estimator to a particular set of data, so that if you wanted to use that estimator subsequently and have it perform in the exact same way you should not refit it, but you should only use it with its transform method. In this video however you used fit transform every time and still got it to perform the same in every data set. Could you tell me a little bit about how that works?
@Animax590
@Animax590 11 ай бұрын
I just used logistic regression and got 0.7655 taking only gender & Pclass. Thanks for your clarification about 100% accuracy though.
@TheErick211_
@TheErick211_ 9 ай бұрын
Is there a video in which you have a deep explanation of how to understand 'Class' __init__ and everything related to this methods?
@rizwan_sayyad
@rizwan_sayyad 4 ай бұрын
Yes u search for OOP in python
@marcosamuel17
@marcosamuel17 3 күн бұрын
I'm stuck in the following code: X_final_test = final_data X_final_test = X_final_test.fillna(method="ffill") scaler = StandardScaler() X_data_final_test = scaler.fit_transform(X_final_test) the message error: FutureWarning: DataFrame.fillna with 'method' is deprecated and will raise in a future version. Use obj.ffill() or obj.bfill() instead. What should i do guys?
@AzureCz
@AzureCz 2 жыл бұрын
I'm curious, how do I know the accuracy percentage inside the notebook, comparing the prediction with the dataset that we have, and not just uploading to kaggle.
@novagamings4505
@novagamings4505 Жыл бұрын
I am new in the field of data science in terms of experience. I have completed paid skill course from IBM though. In my first attempt of this project which is my first project i got an accuracy of 78%. Is it good enough and should i move on to next project or try to refine my model for better accuracy. Please suggest someone with experience
@yogeshwarkethepalli4234
@yogeshwarkethepalli4234 Жыл бұрын
sparse matrix length is ambiguous; use getnnz() or shape[0] showing error message as shown above.(How to slove this) column_names = ["C", "S", "Q", "N"] ---> 13 for i in range(len(matrix.T)): 14 X[column_names[i]] = matrix.T[i]
@wbdhh317
@wbdhh317 Жыл бұрын
me too how to solve
@juanmariomorenochaparro127
@juanmariomorenochaparro127 Жыл бұрын
Thanks, very interesntin video, new susbcribe.
@lemanosmanli2006
@lemanosmanli2006 7 ай бұрын
Hello thanks for your this video , but strat_train_set = pipeline.fit(strat_train_Set) give attribute error that DataFrame object has no attribute "toarray"
@jeeaspirant7890
@jeeaspirant7890 7 ай бұрын
How to fix this please tell
@lemanosmanli2006
@lemanosmanli2006 7 ай бұрын
@@jeeaspirant7890 I can't fix it
@jsemslava7880
@jsemslava7880 Жыл бұрын
A little bit fast(especially typing xD), but good tutorial; I got 79,42%, thanks!
@谷歌账户-d2d
@谷歌账户-d2d 9 ай бұрын
Thank you for you teach video, it is very good for noob
@TheNewfacto
@TheNewfacto Жыл бұрын
I just submitted mine today and I got a score of 0.78229 but then I saw all those 1s and I was like "just how did they do that"😂
@cristhianriverajurado7497
@cristhianriverajurado7497 2 жыл бұрын
I got this error ValueError: Input contains NaN after this line strat_train_set = pipeline.fit_transform(strat_train_set),I was following your tutorial.
@yashp5341
@yashp5341 2 жыл бұрын
I got the same error, did you perhaps get the answer?
@francoramirezcastillo8075
@francoramirezcastillo8075 2 жыл бұрын
@@yashp5341 I solved it, but I don't know if you get the same error, it kept emphasizing this: X[column_names[i]] = matrix.T(i), and it should look like this: X[column_names[i]] = matrix .T[i], I had to change the parentheses for this [ ], I hope it helps
@angelamaharjan2054
@angelamaharjan2054 Ай бұрын
Does anyone know how to do MSE error for this dataset?
@komalrehman7173
@komalrehman7173 8 ай бұрын
i am having strat data error after that everywhere its an error anyone can explain why
@abhinavchoudhary6849
@abhinavchoudhary6849 2 жыл бұрын
Awesome bro
@dragosdalta4317
@dragosdalta4317 Жыл бұрын
Cn't import BaseEstimator, anyone can help?
@anotherone8256
@anotherone8256 2 жыл бұрын
Nice video.
@ParthivShah
@ParthivShah 8 ай бұрын
nice
@kianestrera-hr5vt
@kianestrera-hr5vt 7 ай бұрын
I see they probably cheating I lost confidence when I say some 100% while I only got 0.76 which I think is not bad
@whilstblower901
@whilstblower901 Жыл бұрын
Give the notebook
@pogus3229
@pogus3229 2 жыл бұрын
lol
@HypnosisBear
@HypnosisBear 2 жыл бұрын
Even I laughed at the title.
@mtk-0_0
@mtk-0_0 Жыл бұрын
decent vid
@HypnosisBear
@HypnosisBear 2 жыл бұрын
Lol
@aleks.na.vse.100
@aleks.na.vse.100 2 жыл бұрын
Very interesting. But please translate your video in Russian
@quasii7
@quasii7 2 жыл бұрын
No offence, but the generally accepted language of computer science is English. It would be hard to translate everything, and I am saying this as a non native speaker.
@aleks.na.vse.100
@aleks.na.vse.100 2 жыл бұрын
@@quasii7 а, ну ладно
@paralogyX
@paralogyX 2 жыл бұрын
I am also Russian, but all computer science literature etc is mostly in English, so better to get used to it.
@marie-louiseleroux828
@marie-louiseleroux828 2 жыл бұрын
I'm actually tired of worrying about stocks. it's driving me nuts these days,I think crypto investment is far better than stock made over $39k in a week..
@abubakar_Abson
@abubakar_Abson 2 жыл бұрын
oops that's a huge lost.
@charlesthomas2735
@charlesthomas2735 2 жыл бұрын
That's a good idea,but how do I get an experienced trader? I don't know anyone sorry to bother you mate do you have any that I could work with?
@greysonyhk2826
@greysonyhk2826 2 жыл бұрын
He'll help you recover your money. But must take caution, On the broker you invest with.
@jonassturluson5273
@jonassturluson5273 2 жыл бұрын
he is the best Broker, I have tried lots of professionals but got exceptional income trading with Dave Javens he is the best strategy now earning over $18,300 every 10 days...
@thomassterne599
@thomassterne599 2 жыл бұрын
To me it is, been working with him for a year and four months. And I have been getting my profits seems legit to me️
Professional Preprocessing with Pipelines in Python
21:48
NeuralNine
Рет қаралды 66 М.
Exploratory Data Analysis with Pandas Python
40:22
Rob Mulla
Рет қаралды 519 М.
Каха и дочка
00:28
К-Media
Рет қаралды 3,4 МЛН
黑天使被操控了#short #angel #clown
00:40
Super Beauty team
Рет қаралды 61 МЛН
Что-что Мурсдей говорит? 💭 #симбочка #симба #мурсдей
00:19
House Price Prediction in Python - Full Machine Learning Project
40:40
Beginner Data Science Portfolio Project Walkthrough (Kaggle Titanic)
2:20:17
Ryan & Matt Data Science
Рет қаралды 26 М.
Beginner Kaggle Data Science Project Walk-Through (Titanic)
38:16
Income Prediction Machine Learning Project in Python
38:19
NeuralNine
Рет қаралды 31 М.
Python Machine Learning Tutorial (Data Science)
49:43
Programming with Mosh
Рет қаралды 3 МЛН
Why Does Diffusion Work Better than Auto-Regression?
20:18
Algorithmic Simplicity
Рет қаралды 428 М.
How to do the Titanic Kaggle Competition
18:28
Aladdin Persson
Рет қаралды 80 М.
Каха и дочка
00:28
К-Media
Рет қаралды 3,4 МЛН