is there a video on restricting a domain to make an inverse function possible? like making forcing it to be a 1to1 function
@phantomr2775 жыл бұрын
Hi, I was wondering, do we have to learn piecewise functions for the AQA spec? It appears on the Edexcel spec but I’m not sure.
@TLMaths5 жыл бұрын
Piecewise functions are not a specific part of the Edexcel spec or any of the specs - it is not mentioned in qualifications.pearson.com/content/dam/pdf/A%20Level/Mathematics/2017/specification-and-sample-assesment/a-level-l3-mathematics-specification.pdf - a quick search for the word piecewise reveals nothing. A piecewise function could at most be used for the purposes of drawing a transformed graph after a stretch / reflection / translation but that's about it.
@anisamalik88544 жыл бұрын
Hi, when you restricted the domain, where did the 5 come from?
@TLMaths4 жыл бұрын
I chose it
@divine71683 жыл бұрын
He needs 2 specific co-ordinates of x to restrict the domain and to find the upper value for the restricted range
@yashwinipraba6482 Жыл бұрын
@@divine7168 so i can pick any values ?
@endaodonnell2 жыл бұрын
Tutorial s are excellent
@johnsmith-hs8oi3 жыл бұрын
Hi Sir, On my topic list it says functions (mappings). Do you think this would also include inverse functions?
@TLMaths3 жыл бұрын
It could do - you might want to check with your teacher.
@sanyuyi3 жыл бұрын
Hi: is there any video in which you explain how to transform a many to one function into a one to one function? Thanks
@TLMaths3 жыл бұрын
I'm assuming by transform, you don't mean a graph transformation in the true sense. This video describes precisely what you're describing - restricting the domain of the many-to-one function to make it one-to-one.
@sanyuyi3 жыл бұрын
@@TLMaths Thank you for your answer. The exercise I was talking about is this one: Given a function f defined by y=3(x-4)to the power of 2 +12, x =R. Find a one to one function defined by the same rule as f. Why the answer is >or = to 4?
@TLMaths3 жыл бұрын
The curve y=3(x-4)^2+12 has its stationary point at (4,12). So x>=4 is a domain that would give you all possible values of y, and would make it one-to-one. www.desmos.com/calculator/bblg0bdfl9
@sanyuyi3 жыл бұрын
@@TLMaths Thanks once again. I’ll check all your videos to fully understand this issue.