Thanks for providing these video. I have learned many thing from these. This course contained two part of topology, general (or point set) topology and algebraic topology, but most of these lectures are about general topology, from lecture 1 to lecture 15. I have concluded the topics of these lectures from 1 to 15 : Lecture 1 Introduction, the definition of topology and basis Lecture 2 sub-basis, order topology and product topology Lecture 3 subspace, closed set, limit point and Hausdorff space Lecture 4 more Hausdorff space, continuous function and homeomorphsim Lecture 5 the properties of continuous function, product topology and box topology Lecture 6 metric topology, metrizable space and uniform topology Lecture 7 sequence lemma and its application Lecture 8 first countable, quotient map and connected topological space Lecture 9 linear continuous, intermediate value theorem and path connected Lecture 10 locally connected, component and compact space Lecture 11 the properties of compact space and the min-max value theorem Lecture 12 limit point compact, sequentially compact and countability Lecture 13 more countability and the separation axioms Lecture 14 more separation axioms and the Urysohn lemma Lecture 15 the Urysohn metrizable theorem The last 5 lectures are about the fundamental group and covering spaces, which are parts of algebraic topology. I have not learned for some personal reasons. the textbook is TOPOLOGY: A FIRST COURSE by J.R. Munkres. Thanks a lot!
@user-ge9ft4cu5m6 жыл бұрын
You are a hero
@shofibahalwan4025 жыл бұрын
A real hero
@pedrohbb1235 жыл бұрын
you can check the ictp tv website to watch the second part entitled by algebraic topology ( i think they do not uploaded here yet). there you can download any lecture and i think is more organized. acess www.ictp.tv
@thaleszhan1715 жыл бұрын
@@pedrohbb123 Thanks for your recommendation 😊.
@HuyNguyen-fp7oz4 жыл бұрын
@@pedrohbb123 TKS!
@khadarosman34795 жыл бұрын
Mankres Topology: A First course is a very outstanding reference for general topology.
@francescos7361 Жыл бұрын
Thanks for this educational contribution.
@laflaca53917 жыл бұрын
It would be great to have specified in the description of each video the topics covered in the lecture
@StefSubZero2707 жыл бұрын
la flaca if you go on Zimmermanns official site you will find the entire program of Geometry 1 and Geometry 3 (Topology)
@iamlrk5 жыл бұрын
@@StefSubZero270 can you give me the link please...
@StefSubZero2705 жыл бұрын
@@iamlrk just type "Bruno Zimmermann UniTS" on google and you get it
@iamlrk5 жыл бұрын
@@StefSubZero270 oh, I had just typed just Bruno Zimmerman and got a fashion website 😅😅… thanks got it...
@valerianmp3 жыл бұрын
When you're googling a mathematician, adding "math" after their name really helps
@randalllionelkharkrang4047 Жыл бұрын
im 1/3 of the way of the abstract algebra course be benedict gross. once im left with 4-5 lectures. Ill start this. so that i can finally start algebraic topology.
@one4change4thebetter4 ай бұрын
My question is does the fund trade at NAV or does it fluctuate between at a premium or at a discount to NAV.
@VictorHugo-xn9jz Жыл бұрын
I like this guy
@sunilrampuria79064 жыл бұрын
We don't need DeMorgans at 24:09 to show that arbitrary union of cofinite sets is cofinite, as any superset of a cofinite set is cofinite 🤷🏽♂️
@VictorHugo-xn9jz Жыл бұрын
Different student, different background. I haven't learned it, so I do not know the proof for your theorem. The DeMorgan's is useful for students coming from set theory backgrounds.
@pramu_dithawickrama_tunga16723 жыл бұрын
Nice course no need to do topology Again. Kellwema yawna.
@thaleszhan1715 жыл бұрын
This course is absolutely the first course about the general topology. However, it may pay more attention on the metrizability of a topological space.
@TerresEndormies2 жыл бұрын
17:20 Help me understand. In this system ⊂ means "is a subset of" (equality included) So one of the definitions he gives is necessarily false. I assume " T is finer than T' if T contains more subsets than T' " .... is false. yes? T and T' may be perfectly identical, and in this case both mutually coarser and finer than each other. Fine. But if they are identical, one does not contain more subsets than they other. The correct statement is "T is STRICTLY finer than T' if T contains MORE subsets than T' ".... yes? Or are we redefining "more" to mean "more or maybe the same"?
@VictorHugo-xn9jz Жыл бұрын
No, it is "T is finer than T' if T is equal or contains more subsets than T' ". You yourself said that you included equality. I don't know what you don't understand ?
@johnstfleur39873 жыл бұрын
I WANT TO BUY THE PROFESSOR'S BOOK.
@stefanodardi39345 жыл бұрын
"Intersezioni finiti" Cit
@gerryg64394 жыл бұрын
Does anyone know which exercises to work with for this class?
@Living_for_Him_Alone8 ай бұрын
From Munkres topology may be
@JamesSmith298532 жыл бұрын
35:00 Surprised by students got tangled by different notations.
@randalllionelkharkrang40473 жыл бұрын
what chapters of munkres does the lecture series follow?
@ahaoho52282 жыл бұрын
2,3,4 and 9 I think
@George856775 жыл бұрын
I'm confused, @56:42 where we prove the union of all U_a sets is open, how do we start with the assumption "Let x in Union U_a, where a in J, is open"? Are we just trying to show that the family B is a subset of U?
@sashaallan8554 жыл бұрын
.
@shoy.ouseph4 жыл бұрын
@@sashaallan855 We want to prove that with a set X, subsets U_a and a basis, we have a corresponding topology T. So he tries to prove the 3 conditions for a topology. Here he is trying to prove the 2nd condition that arbitrary unions of U_a are open. So given an element x in the arbitrary union of U_a and a basis, the union is open if there exist a basis element B contained in the arbitrary union of U_a.
@VictorHugo-xn9jz Жыл бұрын
So we need to prove that arbitrary unions of U in T can also have all their x contained by basis elements B_x. This is trivial : We take a point x in Union U_a. Then x must be in at least one of the U_a. As all U_a can have their x contained by basis elements, then x, which is in one of the U_a, has a basis element which contains it.
@donlansdonlans33635 жыл бұрын
Where are the other lectures? I cant find them!
@eastwestcoastkid4 жыл бұрын
Donlans Donlans search using google under Bruno Zimmerman and you can see all 20 lectures..
@SurajKumar-ze8ok2 жыл бұрын
What is ICTP?
@cicciobenzina65696 жыл бұрын
DISUGULIANZA TVIANGOLAVE!!!!!!!!! cit.
@yousify4 жыл бұрын
in 41:29, he said about collection (family). Does he mean that collection is the same as multiset since he said in set each element appears once and each element in collection may appear infinite number of times
@spinecone86126 ай бұрын
A family is usually just a set of sets. There is no notion of elements appearing multiple times in a family in this context.
@pramu_dithawickrama_tunga16723 жыл бұрын
Yeaa you kow Z This is topology eyaaa mor generla 😏
@pramu_dithawickrama_tunga16723 жыл бұрын
Yeaa haha you need to do loqer courses sorry sir * Ai bun etin uni ene Gedrata wela potk balan 🤣 Me kibwal krnada😂 Bank ahnko X ooo this is topology did you understand🙄
@mahmudhassan90214 жыл бұрын
Is this possible to get course outline of this course?
@pramu_dithawickrama_tunga16723 жыл бұрын
Baswaen Edinwda habena dein Topology calls ekta matemtical proof eka gena ekia Wadda bruno mali.
@shlokamsrivastava6782 Жыл бұрын
1:24:25
@breakingmath16 жыл бұрын
I really find more useful the relative notation of a complementary set... It's not a matter of taste...
@sathasivamk17084 жыл бұрын
Complement is stupid nothing we have say from where you take difference that's why he use it. There is nothing called universal set
@VictorHugo-xn9jz Жыл бұрын
@@sathasivamk1708 The "c" notation can be used when the context is unambiguous. There is no concept of universal set involved.
@Eduard000F4 жыл бұрын
Bruh can you not write in cartinese...
@pramu_dithawickrama_tunga16723 жыл бұрын
Bana ahapn 1k wakd na.
@pramu_dithawickrama_tunga16723 жыл бұрын
Nikan symbol liyane ape ewal iyath ba bun 😂
@pramu_dithawickrama_tunga16723 жыл бұрын
Mewa hodaii athel ekta thiyen atgel ekta🤣 Ema tham dan stat neelan ene😂 Ekta yandi mekt dnew pars🤣
@py43114 жыл бұрын
35:00想用结论证结论,lol
@morgenzhao90893 жыл бұрын
he was not aware that the two complement notations are same thing.Preliminary set theory needed.
@pramu_dithawickrama_tunga16723 жыл бұрын
Anika moda hiruni ema ekiyakuth lnakwe newa. 🤣
@sidddddddddddddd5 жыл бұрын
It says a lot when there is no Chinese / Indian in the class.
@shoy.ouseph5 жыл бұрын
I was wondering the same XD
@Rahul-uk4su5 жыл бұрын
What does it say
@fawzibriedj44415 жыл бұрын
It's in Italy guys...
@sathasivamk17084 жыл бұрын
It says nothing
@sathasivamk17084 жыл бұрын
It say you are a bitch lol
@pramu_dithawickrama_tunga16723 жыл бұрын
More genral Dan de mnisumta kiya egena ganin balo 😑 Etkotai wtine Watiam dnumak wene Natnum kamreta wela proof krla kta piyan edan 😑 Anith un komda dne thi proof kalda nda😒
@pramu_dithawickrama_tunga16723 жыл бұрын
Mewa ma ugan eka hodi etin sthel ekata😑 Moka me uni eka😕 Apitnum etawada genrally egnuwaki. Donut eka arn kpala penal🤣
@pramu_dithawickrama_tunga16723 жыл бұрын
For all gwata wakd name topologistaltaeka trhe na😑 Ewa denaekta dnewa ecrai😒 Amith eka mrneda🤣
@logicgladiators35026 жыл бұрын
He assumes you already know everything before the class. This is why many people lose interest in certain topics in math. ‘Make it fun, use real examples, explain everything you use.
@alexandergrothendieck15716 жыл бұрын
To be honest what he is assuming is not that much, and plus he at least acknowledged that students question and didn't ignore it like many professors do.
@steliostoulis18756 жыл бұрын
Basic set theory is not hard to learn
@revliszallirog49675 жыл бұрын
Theking Ofghana I find him so dull, he seems bored himself...
@sathasivamk17084 жыл бұрын
It's not engineering course lol
@Circuito284 жыл бұрын
Well, in Italy at the mathematics university course you start talking seriously about topology at the third year, in GEOMETRIA 3, so it is fair to ask for a pretty deep knowledge in differential geometria and advanced algebra before doing this topic and understand it with no problems
@pramu_dithawickrama_tunga16723 жыл бұрын
Thmnge baswen mnisummta dna de kiyan prduweyan kibo 😑 Esela eka more genral thige labe symbol ekta wada😑 Proof eka puae ghan wadiweyan B topolgy thrunda dan thota bruni 🤣