Topology | Math History | NJ Wildberger

  Рет қаралды 112,435

Insights into Mathematics

Insights into Mathematics

Күн бұрын

Пікірлер: 81
@Toto-cm5ux
@Toto-cm5ux 2 жыл бұрын
As a simple computer scientist, I am happy to understand your video, for a full beginner like me, you made me feel what Topology is
@njwildberger
@njwildberger 12 жыл бұрын
A "manifold" is an attempt to generalize the idea of a surface to higher dimensions. So the two terms are pretty close.
@mpmcd81
@mpmcd81 Жыл бұрын
This has been an absolutely amazing introduction to a lot of advanced mathematics. I cannot think of a better way to rapidly develop mathematical literacy in a short time with any less pain than this. Thank you for this course!
@SerBallister
@SerBallister 9 жыл бұрын
I've been watching a number of your videos over the past few weeks, I must say thank you for releasing these into the public domain, I've learnt a lot.
@njwildberger
@njwildberger 9 жыл бұрын
+SerBallister You're welcome. I hope you continue to learn a lot from these videos.
@acampoverdeify
@acampoverdeify 8 жыл бұрын
I totally agree, we need all this information to be shared, not just available through expensive books or courses in big universities, for which people would need to pay tens of thousands of dollars in tuition.
@NateROCKS112
@NateROCKS112 3 жыл бұрын
Given the copyright notice on the video, I'm pretty sure it is _not_ in the public domain. Edit: And, unless there's another notice somewhere, isn't even freely shareable, e.g., under CC BY-SA 4.0.
@SerBallister
@SerBallister Жыл бұрын
@NateROCKS112 I didn't mean legally in the public domain, like knowledge obtained from a library book, it's available to all.
@njwildberger
@njwildberger 12 жыл бұрын
Correction: the projective plane has Euler number 1, while the sphere has Euler number 2; but the sphere with a crosscap has Euler number 1.
@ellambydefault9715
@ellambydefault9715 3 жыл бұрын
I found your lectures only recently, and they're so intuitively addicting.
@charlesrodriguez6276
@charlesrodriguez6276 4 жыл бұрын
Honestly, this is great from to watch from a math major perspective and to a laymen as well. The ability to speak to both and keep everyone interested with such complex ideas is fantastic!
@njwildberger
@njwildberger 4 жыл бұрын
Thanks!
@gman21xx
@gman21xx 10 жыл бұрын
What an incredible lecture. Neat, organized, clear, and a fair amount of detail. Thanks for the lecture!
@kenroyadams2762
@kenroyadams2762 2 жыл бұрын
Thank you so much for taking the time and effort to upload these videos! This content is so enlightening.
@hritizgogoi3739
@hritizgogoi3739 3 жыл бұрын
Insightful lecture. This is what history is all about - getting insights
@neildhan
@neildhan 11 жыл бұрын
Thanks for this. I did my topology last year but the bit on Descarte's curvature was new to me and very enlightening. As a side note, it was "cool shapes" that originally attracted me to topology, but I unexpectedly ended up really getting into the point-set topology.
@thatkindcoder7510
@thatkindcoder7510 2 жыл бұрын
I'm trying to learn Point set topology with a minimal background in real analysis, and boy oh boy does it hurt. Not the lack of experience in real analysis, but the set theory part. So... much... set theory. If I see a capital letter after reading the textbook I'm going to have traumatic flashbacks to this subject (though I do really like it).
@tjp623
@tjp623 10 жыл бұрын
Very good introduction in 55 min. Excellent comprehension. Thank you for the video. I had this class fall semester in 2012 and to tell you the truth I found this 55 min more interesting than the 14 week lecture. You know I wish professors would give something like this on day one of every advanced mathematics class instead of going over syllabus's and attendance which was a total waste of time.
@njwildberger
@njwildberger 10 жыл бұрын
Thanks for the nice remarks Thomas. I hope you will watch the other videos in the series too.
@justcrank9088
@justcrank9088 8 жыл бұрын
+Thomas Platt And they just love wasting time dont they? the first day package includes.."describe yourslef to rest of the class" "what is your opinion about the subject" and punnishment for plajorism
@user-qr3em2zp8h
@user-qr3em2zp8h 8 ай бұрын
I have been very impressed by your lectures. I feel as if I am wrapping my head around abstract ideas I've wanted to learn about but couldn't get there myself.
@njwildberger
@njwildberger 12 жыл бұрын
Whoops, you are right. Actually Descartes wrote a short paper on this which has been lost, except for a copy of it made by Leibniz in 1676. That was subsequently only found among Leibniz's papers in 1860.
@gateronblackinksv2173
@gateronblackinksv2173 2 жыл бұрын
Your lectures are amazing!
@TheoryofHobin
@TheoryofHobin 11 жыл бұрын
This is so intuitive. Thanks for uploading!
@jpdemont
@jpdemont 7 жыл бұрын
Hobin, you look familiar. Did you teach a physics class? LOL
@bnouadam
@bnouadam 7 жыл бұрын
no other word but thank u for that level of accessibility and simlicity
@mgmartin51
@mgmartin51 3 жыл бұрын
Perhaps the Constitution should have the phrase "all men are created homeomorphic" instead of equal. Then we could realize that we are all different, yet equal in the logical sense.
@forrestt7263
@forrestt7263 11 жыл бұрын
Thank you for the physical insight. The idea of total curvature being spread over a number vertices helps me. Thank you.
@rasraster
@rasraster 4 жыл бұрын
I recently learned about the Dirac equation and spinors. The Riemann square root provides a lot of insight!
@snapperfish101
@snapperfish101 9 жыл бұрын
tks NJ a wonderful lecture. I'am on a mission to understand "the road to reality" by roger penrose. roger is a bit brief in his discussion on the construction of Riemann surfaces and the geometric interpretation of complex functions.
@njwildberger
@njwildberger 9 жыл бұрын
Paul Vivers Thanks. You might also be interested in the MathHistory19: Complex numbers and curves lecture, which says more about Riemann surfaces.
@stapleman007
@stapleman007 2 жыл бұрын
34:24: Basically, Quantum Mechanical spin. So QM spin, topology, and complex functions have common properties.
@miker6385
@miker6385 3 жыл бұрын
Elegant lecture!
@njwildberger
@njwildberger 11 жыл бұрын
No the tetrahedron is pointyer (at a vertex) than a cube. The total curvatures are the same: for the tetrahedron this is spread between 4 vertices, for the cube it is spread between 8. You can see this geometrically: using a corner of a tetrahedron to crack a nut would be more effective than using the blunter corner of a cube.
@ffggddss
@ffggddss 8 жыл бұрын
[NB: I haven't watched this video yet, and can't until tomorrow. So I don't know the scope of what you cover in here. After watching it, I may have to revise some of what follows.] Yes, the "angular deficit" at each corner is a good concept to latch onto - it's a good analog to the exterior angle of a polygon. If you take the faces surrounding a vertex, split that along one edge, and open it out into a plane, for the regular tetrahedron, the gap-angle, indicating 'failure to close,' is 360º - 3·60º = 180º = π while for the cube, it's 360º - 3·90º = 90º = ½π Summing each over all the vertices gives: tetrahedron: 4·π = 4π cube: 8·½π = 4π - in both cases, equal to the total (surface-integrated) curvature of a sphere, S: ∫ κ dA = A·κ = 4πR²·(1/R²) = 4π S The same technique can be applied to each of the other 3 regular solids; or, for that matter, to any solid that's topologically equivalent to a sphere. For Kepler's stella octangula, e.g., there are 6 vertices, each with eight 60º angles, which make for a negative angular deficit = 360º - 8·60º = -120º = -⅔π ... and 8 vertices, each identical to the tetrahedron's, with angular deficit = 360º - 3·60º = 180º = π ... so the sum is 6(-⅔π) + 8·π = -4π + 8π = 4π All these results fall out of the Gauss-Bonnet theorem, one of the most beautiful in all of mathematics, IMHO.
@midtagi5771
@midtagi5771 7 жыл бұрын
njwildberger like your answer, professor. Thank you so much.
@postbodzapism
@postbodzapism 12 жыл бұрын
Thank you, Prof. Wildberger, for your seventeen videos on the subject that teachers and students here in my place are not very well interested in...
@ashwinibhardwaj9955
@ashwinibhardwaj9955 3 жыл бұрын
i have been watching your videos and they have made me understand even the most complex concepts in math
@ffggddss
@ffggddss 8 жыл бұрын
≈ 14:30-15 min - - The "little bit of details to work out" when matching two different maps on S², seem to me to be principally, showing that those operations you cited from Poincaré, actually *can* get the two maps to match. It's intuitively kind of obvious; I trust that was something Poincaré carried out? Incidentally, you can connect an existing vertex to itself with a simple closed loop that doesn't cross any edge, and the effect is the same as if two distinct vertices were connected across some face. ≈ 42:30 (question from audience) The point about not allowing cuts and joins is, you're not allowed to do those things and then claim you have a topologically equivalent (homeomorphic) surface. And you're OK doing cuts & joins here, *because* you're *not* claiming homeomorphism; you're constructing a new surface that corresponds to what the square root (or other function) looks like.
@mrpotatohed4
@mrpotatohed4 3 жыл бұрын
Coincidentally watched a video right before this by Mathologer called "The Iron Man hyperspace formula really works". I would recommend it to anyone who enjoyed this lecture.
@stefan11804
@stefan11804 3 жыл бұрын
Thank you for the insights
@abdelouahababdelouahab5180
@abdelouahababdelouahab5180 4 жыл бұрын
Thanks a lot. I studied topology without known the purpuse. The Professor gave définitions and demonstrasted theorems. A few people could pursue him.
@AkamiChannel
@AkamiChannel 3 жыл бұрын
Absolutely amazing and fantastic. Thank you so much.
@LaureanoLuna
@LaureanoLuna 7 жыл бұрын
Descartes died in 1650, when Leibniz was four... so there must be some confusion at 15:28.
@luisarean
@luisarean 5 жыл бұрын
I was wondering, thank you.
@ouafieddinenaciri3783
@ouafieddinenaciri3783 5 жыл бұрын
Very good job .. Thanks a lot professor Wildberger
@bibimbab9095
@bibimbab9095 4 жыл бұрын
Great overview👍
@robertgilmore1655
@robertgilmore1655 11 жыл бұрын
A fabulous lesson, thank you very much, Prof. Wildberger!!
@haimbenavraham1502
@haimbenavraham1502 5 жыл бұрын
Excellent lecture with an equally excellent lecturer. Thank you. One of the demoralizing aspects for an excellent lecturer is to have zero feedback from his numb students.
@dansaunders6957
@dansaunders6957 4 жыл бұрын
Such enjoyable lectures. Thank you!
@gene546
@gene546 3 жыл бұрын
He is my favorite mathematician. The best; for me; of course.
@maxwang2537
@maxwang2537 3 жыл бұрын
Amazing. Thanks.
@Our_Sole_Pusch
@Our_Sole_Pusch 11 жыл бұрын
Excellent course.
@elamvaluthis7268
@elamvaluthis7268 2 жыл бұрын
Very nice explanation thank you ❤️sir.
@pedromoya9127
@pedromoya9127 Жыл бұрын
thank you, great lecture
@klong4128
@klong4128 4 жыл бұрын
Very good introduction to the historyof topology .Your brief one video englighten my mindset : Topology limitation shows that there are 'BigRoom' for future development/improvement ! Initially I thought Topology is just a 'Rubber-Sheet Maths Transformation' .Maths without any number/algebra/symbols. but GraphicPicture . Thanks for your knowledge sharing in Concepts until 21st century .
@schrodingerbracat2927
@schrodingerbracat2927 3 жыл бұрын
If a topologist is drowning and asks for a rubber tire, just throw him a tea-cup! he can't tell the difference.
@midtagi5771
@midtagi5771 7 жыл бұрын
Thank you so much professor. It is really helpful lesson. But could you explain why you told s^3 in 3 dimension at the end of lesson ? Please.
@takumicrary4396
@takumicrary4396 3 жыл бұрын
Thank you!
@jmafoko
@jmafoko 8 жыл бұрын
amazing series
@forrestt7263
@forrestt7263 11 жыл бұрын
Thank you for the wonderful lesson. I am a little confused, however. If the curvature of a non-pointy flat plane is 1, then wouldn't the cube be pointyer than the tetrahedron? cube 1/4 tetrahedron 1/2? Thanks again.
@jarrettmattson
@jarrettmattson 12 жыл бұрын
The Euler of KZbin has done it again.
@kiranshetty324
@kiranshetty324 12 жыл бұрын
Thank you! This helped me with my paper on the Euler characteristic.
@ryanchiang9587
@ryanchiang9587 6 жыл бұрын
like this course!
@Capitalschism
@Capitalschism 12 жыл бұрын
Great lecturer!
@sahandhemmat5447
@sahandhemmat5447 11 ай бұрын
thank you so much
@reik2006
@reik2006 12 жыл бұрын
cool lecture :), thanks!
@hameshamulla1409
@hameshamulla1409 4 жыл бұрын
Thank you sir
@mike58greenberg
@mike58greenberg 10 жыл бұрын
This is soooo cool!
@mathstoinfinityclassinTamizhla
@mathstoinfinityclassinTamizhla 4 жыл бұрын
I love his lecture 😍🐈
@aizaimran947
@aizaimran947 4 жыл бұрын
great video, i was hoping if you could maybe explain topology with a more conceptual and intuitive approach
@alielkarar3027
@alielkarar3027 8 жыл бұрын
thank you very much but make substitutes plz
@abdullahalolofy7728
@abdullahalolofy7728 5 жыл бұрын
Thank you
@aristotleinbottle8012
@aristotleinbottle8012 5 ай бұрын
thanks
@brendawilliams8062
@brendawilliams8062 4 жыл бұрын
Thankyou.
@fawzyhegab
@fawzyhegab 11 жыл бұрын
Great Lecture! Thanx !
@hx11hx1
@hx11hx1 11 жыл бұрын
thanks a lot
@elcapitan6126
@elcapitan6126 7 ай бұрын
it's so sad that most universities simply teach ideas "handed down from the gods" rather than explore the fundamentals from which one can derive the rest and particularly within a constructive/computational theoretical foundation (where is type theory in most mathematics courses for example? despite being another candidate for foundations of mathematics and subsuming the mysterious (axiomatic sets) with the concrete and simple (types, homotopy type theories where there is a topological interpretation of types)
@Myrslokstok
@Myrslokstok 12 жыл бұрын
Thank you, you are great - you make me great!
@grexhector8944
@grexhector8944 11 жыл бұрын
perfect
Differential Geometry | Math History | NJ Wildberger
51:32
Insights into Mathematics
Рет қаралды 172 М.
Pythagoras' theorem (b) | Math History | NJ Wildberger
23:26
Insights into Mathematics
Рет қаралды 117 М.
Правильный подход к детям
00:18
Beatrise
Рет қаралды 11 МЛН
小丑女COCO的审判。#天使 #小丑 #超人不会飞
00:53
超人不会飞
Рет қаралды 16 МЛН
1% vs 100% #beatbox #tiktok
01:10
BeatboxJCOP
Рет қаралды 67 МЛН
Richard Feynman's Math Books
27:34
The Math Sorcerer
Рет қаралды 157 М.
Complex numbers and curves  | Math History | NJ Wildberger
57:56
Insights into Mathematics
Рет қаралды 36 М.
Number theory and algebra in Asia (b) | Math History | NJ Wildberger
22:53
Insights into Mathematics
Рет қаралды 34 М.
Topology is Impossible Without These 7 Things
13:19
DiBeos
Рет қаралды 23 М.
Non-Euclidean geometry | Math History | NJ Wildberger
50:52
Insights into Mathematics
Рет қаралды 166 М.
Weird Topological Spaces  //  Connected vs Path Connected vs Simply Connected
13:07
Calculus | Math History | N J Wildberger
1:00:00
Insights into Mathematics
Рет қаралды 133 М.
The Beautiful Story of Non-Euclidean Geometry
15:28
Dr. Trefor Bazett
Рет қаралды 98 М.
Who cares about topology?   (Old version)
18:16
3Blue1Brown
Рет қаралды 3,2 МЛН
Group theory  | Math History | NJ Wildberger
58:54
Insights into Mathematics
Рет қаралды 137 М.
Правильный подход к детям
00:18
Beatrise
Рет қаралды 11 МЛН