Рет қаралды 188
Dr. Armstrong is a human factors researcher at IDA where she is involved in operational testing of defense systems. Her expertise includes interactions between humans and autonomous systems and psychometrics. She received her PhD in Human Factors Psychology from Texas Tech University in 2021. Coauthors Elizabeth Green, Brian Vickers, and Janna Mantua also conduct human subjects research at IDA.
Situation Awareness (SA) plays a key role in decision making and human performance; higher operator SA is associated with increased operator performance and decreased operator errors. In the most general terms, SA can be thought of as an individual’s “perception of the elements in the environment within a volume of time and space, the comprehension of their meaning, and the projection of their status in the near future.” While “situational awareness” is a common suitability parameter for systems under test, there is no standardized method or metric for quantifying SA in operational testing (OT). This leads to varied and suboptimal treatments of SA across programs and test events. Current measures of SA are exclusively subjective and paint an inadequate picture. Future advances in system connectedness and mission complexity will exacerbate the problem. We believe that technological improvements will necessitate increases in the complexity of the warfighters’ mission, including changes to team structures (e.g., integrating human teams with human-machine teams), command and control (C2) processes (e.g., expanding C2 frameworks toward joint all-domain C2), and battlespaces (e.g., overcoming integration challenges for multi-domain operations). Operational complexity increases the information needed for warfighters to maintain high SA, and assessing SA will become increasingly important and difficult to accomplish. IDA’s Test science team has proposed a piecewise approach to improve the measurement of situation awareness in operational evaluations. The aim of this presentation is to promote a scientific understanding of what SA is (and is not) and encourage discussion amongst practitioners tackling this challenging problem. We will briefly introduce Endsley’s Model of SA, review the trade-offs involved in some existing measures of SA, and discuss a selection of potential ways in which SA measurement during OT may be improved.