Thank you so much for explaining these ideas with this concise video.
@guetsenelson27922 ай бұрын
Thanks for taking Time and explaining so well
@namelessbecky3 ай бұрын
Thank you. This is much understandable than my textbook
@dhandrat2 жыл бұрын
Thankyou so much. Brilliant video !
@ml_dl_explained2 жыл бұрын
You're most welcome
@aristotlesocrates84097 ай бұрын
Excellent explanation
@houstonfirefox2 ай бұрын
Great video! Suggestion: Normalize volume to 50% going forward as I really had to crank up the speakers to hear your voice.
@thewisearchitect Жыл бұрын
Very well explained. Thank you very much. I just pressed the Subscribe button :)
@mrsmurf911 Жыл бұрын
Good Content Subscribed right away!!!
@ml_dl_explained Жыл бұрын
Thank you very much!
@KomalRathore-l6f4 күн бұрын
Easy to understand
@snugalmond1659 Жыл бұрын
I am so grateful. Thank you.
@andrefurlan8 ай бұрын
Thanks! More videos please!
@tesfatsion20043 ай бұрын
Stunning!!
@jhmrem Жыл бұрын
Great intro
@RameshChintapalli-h7n11 ай бұрын
great explanation
@dhualshammaa2062 Жыл бұрын
its great simple video will be great to do more videos showing the over fitting and under fitting and other questions that normally been on interviews
@ml_dl_explained Жыл бұрын
Thank you for the positive feedback. I'll do my best.
@מיכלשמואלי-פ2ל2 жыл бұрын
Great video
@ml_dl_explained2 жыл бұрын
Thanks!
@my_master552 жыл бұрын
Thank you for the vid 👍 But what do you mean by "thresholds" at 11:10 ? Like, what are the thresholds in terms of neural networks, and how can we change them? Thank you :)
@ml_dl_explained2 жыл бұрын
Thank you for the positive feedback :) The most simple way to think of a threshold is through a simple model, with only 1 feature as an input and two possible classes as output (say 0 and 1). Then when the model is trained it finds the "best" threshold for the input feature. So, for example, if we denote the input feature as a, then the model may learn that if a>=0.5 then the label is 0, otherwise it's 1. In this example the threshold is 0.5. Neural networks work differently (in most cases) and thus thinking of a threshold may be confusing. For our example from the paragraph above, the output of a neural network will be a vector/list of size 2, where each index is the probability that the output is in that specific class. For example if the output is [0.14, 0.85] then the model "thinks" that there is a 14% chance that the input is from label 0 and a 85% chance its from label 1. If our neural network had only 1 neuron then the 0.5 value from the example above could be incorporated into it. "How do we change it?" - This really depends on what you want to achieve. If FA are more important than FN, or the other way around then you can change your loss function and the incorporated threshold will change accordingly. Hope this helps :)
@my_master552 жыл бұрын
@@ml_dl_explained cool, thanks 👍 Tbh, I didn't really get how can we "vary the thresholds" to further plot ROC or AUC for a neural network. . I mean, when a model is trained - we have only a single point at the ROC plot (current state of the model). But then how can we "change the thresholds" to have multiple points on the plot? Thank you 😊
@ml_dl_explained2 жыл бұрын
You're welcome :) When we train the model, it outputs probabilities. We can change the threshold of those probabilities to get different labels - for example, if the model's output is [0.34, 0.66], one threshold could be if the threshold for class 1 is set to 50% then the output of the model is labeled 1. If we set the threshold to, say 70% then the output changes to 0. So playing around with the threshold gives you different outcomes for the ROC curve.
@my_master552 жыл бұрын
@@ml_dl_explained oh, okay, so ROC and AUC are mostly used for the binary classification?
@ml_dl_explained2 жыл бұрын
Yes. exactly
@SummerAutumn923 Жыл бұрын
Thank you so much 💙💙💙💙💙🌌🌌🌌.
@ml_dl_explained Жыл бұрын
Thank you for the positive feedback
@ofirkish55712 жыл бұрын
Awesome!
@ml_dl_explained2 жыл бұрын
Thank you! Cheers!
@fact63604 ай бұрын
Brilliant.
@ahmedal-baghdadi3946 Жыл бұрын
well explained
@ml_dl_explained Жыл бұрын
Thank you :)
@moatzmaloo7 ай бұрын
Thank you
@muhammadanasali76319 ай бұрын
Can I have these slides please within respective concern 🙏💓