Triangular Numbers Modulo 3 (visual proof)

  Рет қаралды 2,566

Mathematical Visual Proofs

Mathematical Visual Proofs

Күн бұрын

Пікірлер: 16
@solaokusanya955
@solaokusanya955 Жыл бұрын
Amazing
@oddlyspecificmath
@oddlyspecificmath Жыл бұрын
Okay...I'm rewatching at least once; I got distracted, reminded of those rearrangement puzzles where a bit disappears and you're supposed to explain where it went 😅
@BintangPagar-l2r
@BintangPagar-l2r Жыл бұрын
Please proof the difference to product identities II sina-sinb=...
@carlkarl
@carlkarl Жыл бұрын
Hmm can u do 1+2+3+4+......infinite =-1/12
@mathematicsman7454
@mathematicsman7454 Жыл бұрын
Don't copy the repeating news
@carlkarl
@carlkarl Жыл бұрын
@@mathematicsman7454 didn't got it, but my maths teacher told me that proof when I was in 9th grade so just asking u to do it if it's possible, u can deny the request, I'll accept it
@MathVisualProofs
@MathVisualProofs Жыл бұрын
It’s not really true. I can be shown if you use Cesaro summation on a particular series, but because it is not 100% correct it will be impossible to find a visual proof.
@robologo
@robologo Жыл бұрын
You lost me at 00:12 I dont understand that equation. Idk what it means that the k is at the bottom of the T.
@MathVisualProofs
@MathVisualProofs Жыл бұрын
That’s the definition of the number T_k. k is any positive integer and it tells you where to stop adding. So T_5 would be 1+2+3+4+5
@solaokusanya955
@solaokusanya955 Жыл бұрын
But I don't understand the " 3 " part
@MathVisualProofs
@MathVisualProofs Жыл бұрын
What do you mean?
@solaokusanya955
@solaokusanya955 Жыл бұрын
@@MathVisualProofs I don't understand the part where you made. 3 the coefficient and how you separated 2k +1 and k
@MathVisualProofs
@MathVisualProofs Жыл бұрын
@@solaokusanya955 So 3k+1 splits into 2k+1 + k, so I decomposed the base dots into two sets. Then, I formed a trapezoidal array using those two measurements (2k+1 by k) and that trapezoid was able to fit "3" times around the array. This means I have 3 copies of the resulting trapezoidal array. The trapezoidal array is then built as the difference of two triangular arrays, and so that's where the rest of the formula came from.
@SirP-rd5yh
@SirP-rd5yh Жыл бұрын
A big fraud.
@SirP-rd5yh
@SirP-rd5yh Жыл бұрын
A cheap way of explaination.
@SirP-rd5yh
@SirP-rd5yh Жыл бұрын
low quality teacher
Diophantus's Sum of Squares Identity I (visual proof)
2:31
Mathematical Visual Proofs
Рет қаралды 4,9 М.
Pi Times Phi using a Regular Icosagon Area (visual proof)
4:13
Mathematical Visual Proofs
Рет қаралды 12 М.
Ful Video ☝🏻☝🏻☝🏻
1:01
Arkeolog
Рет қаралды 14 МЛН
Какой я клей? | CLEX #shorts
0:59
CLEX
Рет қаралды 1,9 МЛН
A New Year 2025 Math Fact
7:32
Mathematical Visual Proofs
Рет қаралды 1,6 М.
Little Gauss, The Triangular Numbers and Some Variants
11:34
Flammable Maths
Рет қаралды 8 М.
The Dome Paradox: A Loophole in Newton's Laws
22:59
Up and Atom
Рет қаралды 272 М.
Hidden Fractals - An exploration of the dragon curve
4:42
Seven Proofs Without Words for Summing Cubes
6:19
Mathematical Visual Proofs
Рет қаралды 3,5 М.
What is mathematical thinking actually like?
9:44
Benjamin Keep, PhD, JD
Рет қаралды 2 М.
Triangular Numbers - Corbettmaths
8:46
corbettmaths
Рет қаралды 44 М.
Sum of n Triangular Numbers - Animation | mathocube |
1:46
Mathocube
Рет қаралды 1,8 М.
0.bbbb... = 1 (in base b+1) | 9 geometric series dissection proofs without words
6:51
Mathematical Visual Proofs
Рет қаралды 4,1 М.
Ful Video ☝🏻☝🏻☝🏻
1:01
Arkeolog
Рет қаралды 14 МЛН