Laplace Transform Ultimate Study Guide: kzbin.info/www/bejne/nKXRoYCVh7RjgMU
@MuhammedmehdiTaqsh6 ай бұрын
Sir can you show us how we can calculate inverse Laplace transform by using integral relation L^-1=1/2πi*integral(f(s).e^s*t.ds)
@drpeyam4 жыл бұрын
At first I thought you were gonna do the Laplace video but in reverse 😂
@blackpenredpen4 жыл бұрын
I should have just done that...
@jacobharris58942 жыл бұрын
That would be a meta video lol.
@frozenmoon9984 жыл бұрын
These marathon videos are becoming my most favourite thing to watch!
@blackpenredpen4 жыл бұрын
Thanks, glad to hear!!
@mathalysisworld6693 Жыл бұрын
same @svetozar
@MathswithMuneer4 жыл бұрын
Hello from a math teacher in Pakistan. I am glad to see teachers taking initiatives and helping students in their problems. I am positive our videos are a great source of help for them. Good work
@vibhupandya61034 жыл бұрын
The hell dude. I just started the original laplace marathon. And ALREADY?
@blackpenredpen4 жыл бұрын
😂
@Giovanni123322 жыл бұрын
These marathons are great, your effort with the worksheet, timestamps, and everything else is greatly appreciated. Helped me out so much.
@tombartimtim17254 жыл бұрын
It would be nice a double and triple integrals marathon!!
@jacobharris58942 жыл бұрын
I second this. Although maybe like 50 instead of 100.
@thecritiquer94072 жыл бұрын
also a fourier transformation series marathon.
@ContentMIN11 ай бұрын
yeah, fourier series marathon@@thecritiquer9407
@OwelleUwaleke6 ай бұрын
The beauty of all these videos is that you can watch again, again and again until you come to grasp the concept
@hevanderdacosta32114 жыл бұрын
Now we just need a fourier and inverse fourier transform marathon.
@daniloalmeida7444 жыл бұрын
Yes, Please!
@aashsyed12773 жыл бұрын
Wheres Fourier series and inverse Fourier series?
@twapewaxoliswa33135 ай бұрын
Exactly
@joshuaokeke27264 жыл бұрын
Finally!!!!!! Someone that understands, S and 5 can be really confusing especially if your handwriting is as bad as mine
@FaranAiki4 жыл бұрын
Yeah, but why we use 's' not 'f' or 'g'?
@MrPanzerTanzer4 жыл бұрын
@@FaranAiki Because the original inventor used s and f and g are reserved for functions.
@quantumsoul34954 жыл бұрын
you can use cursive s, you will no longer confuse them
@Shailendra28199624 жыл бұрын
“Is this heaven?” - “No this is a Inverse Laplace marathon” “Hm, fair enough”
@blackpenredpen4 жыл бұрын
lol
@thevenin264 жыл бұрын
Can't I just play the other Laplace video in reverse? :-)
@blackpenredpen4 жыл бұрын
Hahaha that should work too!
@markjosephaala22542 жыл бұрын
😂😂 witty
@sgems132 жыл бұрын
It would sound wird
@lih33912 жыл бұрын
@@sgems13 thats the last of their worries lol
@carultch10 ай бұрын
Another way to solve the convolution of multiple trig functions: Based on the degree in the denominator for (s^2 + w^2)^n, the value of (n - 1) tells you how many times you'll eventually multiply trig by t. So you form a linear combination of t^k*sin(w*t) and t^k*cos(w*t), where w is the angular frequency, and k is a power that builds from 0 to (n-1). You then find corresponding Laplace transforms to each of these terms, and add up a linear combination with unknown coefficients, to equate to the original transform. Use the function parity property of convolution, you can eliminate half of the terms, and have half as many unknowns to solve for. f_odd(t) conv g_odd(t) = odd function f_even(t) conv g_even(t) = odd function f_odd(t) conv g_even(t) = even function If expecting odd functions, this means you can eliminate all t^even * cos(w*t) terms and t^odd * sin(w*t) terms. Vice versa, if you are expecting even functions. Then you proceed with solving for the unknown coefficients.
@blackpenredpen4 жыл бұрын
All the s's are in red. How do you distinguish your s and your 5?
@lopkobor69164 жыл бұрын
blackpenredpen Can you do Fourier Transforms?
@JB-ym4up4 жыл бұрын
Not without a green pen.
@jagatiello69004 жыл бұрын
Haha Steve, i had exact the same "trouble" distinguishing between the 5 and the s back in the university...my workaround method was writing the s with some horns added in both its ends, you can't imagine how fancy they look...
@blackpenredpen4 жыл бұрын
Can you tweet me a picture of how it looks like?
@jagatiello69004 жыл бұрын
@@blackpenredpen don't have tw account, sent u to ur gmail instead
@holyshit9224 жыл бұрын
19 Here we can be tricky and build difference of squares from linear factor of denominator Then we will get constant term if we combine difference of squares with the other factor of denominator We will get 13=(s^2+9)-(s+2)(s-2) If we replace numerator by 1/13((s^2+9)-(s+2)(s-2)) we will have nice cancelling 20 16=s^4-(s^2-4)(s^2+4) and we have nice cancelling If we know hyperbolic functions we dont need partial fractions
@blackpenredpen4 жыл бұрын
Ahhhh so good!
@abdulmajeedghareeb9 ай бұрын
I have just found ur channel today and hands down ur already one of my favorite teachers on youtube. I wish i knew about u earlier. Ive been studying for some hours now and this is something i didnt do in a very long time. Your videos are very informative and very entertaining.
@The1RandomFool2 жыл бұрын
Coming back and re-watching this video a couple years later, it occurs to me that on question 20 and other hard partial fraction decomposition problems the residue theorem from complex analysis can be used to help with it. You'd just have to calculate a couple derivatives for building up the powers of s, and the rest is fine.
@anarbay244 жыл бұрын
I am taking differential equations in MIT and literally, you are saving my time with excellent exercises. Our book is just awful. Just imagine, some of your exercises appeared in my midterm exam
@lindsaywaterman20104 жыл бұрын
This expression could have been written as 1/8[1/(s^2-4 -2) -1/(s^2+4)] and then 1/16[2/(s^2-4 -2) -2/(s^2+4)]. The Laplace Transform would , therefore be 1/16[Sinh(2t) -Sin(2t)], which is what Black Pen Red Pen got but in a convoluted way.
@Amine-gz7gq3 ай бұрын
I've just finished the Laplace Transform Ultimate Study Guide video now I'm going to start watching this one, it's going to take me a while like the other one because I have other things to do.
@ChanceGrey-t5v4 ай бұрын
Thank you thank you thank you! I would be lost in college without your videos!
@kirbo7227 ай бұрын
I, once again, deeply thank you bprp! This was EXTREMELY helpful! ❤
@federicopagano65902 жыл бұрын
Number 16 no need to do that to find C and D You just have to multiply bt (s^2+4) both sides and then evaluate at s=2i It will follow -1/8 =C(2i) +D Immediately D=-1/8 and C=0 1/(s-2)(s+2)=1/(s^-4) evaluated at s=2i equals -1/8
@luisgarza42443 жыл бұрын
Love the way you teach. Fast but informative.
@The1RandomFool4 жыл бұрын
I really like these marathons.
@blackpenredpen4 жыл бұрын
Thanks!
@XgamersXdimensions4 жыл бұрын
Maybe next could be some linear algebra videos? Ideas could be marathon on: finding Inverses, Eigenvectors, eigenvalues of matrices?
@Zeusbeer2 жыл бұрын
For question 12 you can really easily simplify the partial fractions by letting some w = s^2 and then doing the partial fractions on w, and then later substituting s back in. edit: A simular trick can be used for Q16, where you can split up (s^4-16) into (s^2+4)(s^2-4) and again let w = s^2, do the partial fraction, reverse into the s world, then you can simplify it all down into 1/16(sinh(t) - sin(t))
@jonacasals54 жыл бұрын
I respect you so much. Right now I cant understand this topic, but I will comeback.
Residues are alternative way to partial fraction decomposition In fact complex partial fractions decomposition works better Residues are more comfortable also for inverse Z transform
@Vladimir064Mr4 жыл бұрын
Thank you, this quarantine has led me to study differential equations on my own, thanks from Honduras
@snipergranola63594 жыл бұрын
Solution of partial differential eq using Laplace and Fourier transtorm
@alperyasin7104 жыл бұрын
Sir i appreciate you. You are the best! Greetings from Turkey.
@notpistooo10 ай бұрын
Hii, thank you bprp for these marathon videos. It is very helpful even after 3 years and it will stay helpful. I would like to point that i couldn't open the file, which is not a big problem because we have the functions in the video and the description, but still it would be nicer to have them printed. Thank uu again
@farhanaferdous35814 жыл бұрын
Thanks blackpenredpen....take care and best wishes from Bangladesh 🇧🇩🇧🇩🇧🇩
@banderfargoyl4 жыл бұрын
An inverse Laplace marathon? Man, there must be a lock-down! 😂
@Bayonettamachinekill2 жыл бұрын
incredible was able to find error in the work we did thanks so much.
@igarciaasua94 жыл бұрын
Do you guys know a marathon video of differential equations? I have to retake them for a subject and these videos are very useful
@啟瑞-f4n10 ай бұрын
You are a great teacher!❤❤❤
@eswyatt3 жыл бұрын
A higher order differential equations marathon would make a complete set!
@Marcox3854 жыл бұрын
Getting bored with the quarantine bprp? Ye, me neither
@lopkobor69164 жыл бұрын
Everyone's saying that they're all bored while we're just chilling at home doing maths
@aleks4563 жыл бұрын
can't imagine that this was posted 9 months ago now..
@Marcox3853 жыл бұрын
@@aleks456 I can't handle this anymore, I've passed calc 2 and 3 since then but this is enough
@aleks4563 жыл бұрын
@@Marcox385 Same bro. Let's just hold on and wait for this to finish!
@Subhajit03-n6j4 жыл бұрын
Exciting!!
@guiencarnacao69182 жыл бұрын
You are the best, thank you so much :D
@paologrisanti78654 жыл бұрын
I was additcted to marathon's race (done 3) now I am addict to your marathon 👍 From Italy with love!
@jarikosonen40794 жыл бұрын
It looks like the (6) case the cos(t-π/2) can be also sin(t)... In the (7) case cos(t)-sin(t) can be sqrt(2)*sin(π/4-t)... This should be possibly simplified in the t-domain. (10) delta(t-a) correct, but maybe then mistake before the inverse laplace if this is result. The delta is more practical in s-domain than in t-domain... (26) Try inverse laplace of s^2/(s^2+a^2)... How to make this? Why result is different for L^-1{1-a^2/(s^2+a^2)} versus L^-1{s/(s^2+i×a)} ∗ L^-1{s/(s^2-i×a)} (∗ = convolution)? Can this prove that convolution theorem and other inverse laplace can differ? Is correct answer -a×sin(a×t) ? Maybe is it possible to reconfigure the transformation to present the frequencies reference point at t=0- (zero minus) so that resulted delta(0) would be delta(0-) and then by using laplace validity for t>=0 removing this delta-function?
@muhamadfaisalbinrachmanmoe522810 ай бұрын
I love u sirrrrrr❤❤i love the way u teach us.its easy to understand
@milagros070728 Жыл бұрын
THANK YOU SO MUCH
@downtwojames54414 жыл бұрын
You're a champ! This helped a ton. Thanks!
@bassjunias439 Жыл бұрын
Video still useful today. Thanks teacher! But @blackpenredpen Can you also do fourier transform please?
@arberithaqi4 жыл бұрын
Next Video: Differential Equation 2nd Order (btw. keep up with the great content, love it!)
@mahibulhaque59524 жыл бұрын
You are great I like this channel more than other ...
@QuranReact1 Жыл бұрын
Well done !! I gotta ask a question : for Q15, F(S) doesn't converge to 0 when s goes to infinity, therefore we can't use differentiation, right ?
@QuranReact1 Жыл бұрын
oh srry, right ln(1)=0. My bad.
@laurentwatteau88352 жыл бұрын
For #16, the result could have been written as (1/16)[sinh(2t)-sin(2t)], which makes more sense to me.
@chris-hj2qd2 жыл бұрын
Awesome working through the struggle
@WilsonWolAguekNgot4 жыл бұрын
My favorite teacher
@wryanihadАй бұрын
In minite 48 your solution Is correct But i solve it by adding (s²+1-s²) twic
@1ereliguejeunessetennisdet7084 жыл бұрын
你回来了曹老师👍
@blackpenredpen4 жыл бұрын
Thanks!!
@emanuellandeholm56574 жыл бұрын
Who's teacher cao? Is that bprp?
@lawandeconomics12 жыл бұрын
Your video was badly needed! Most books and sources just blow through one example…forgetting that perfect practice makes perfect! Thanks!
@blackpenredpen2 жыл бұрын
Glad to help 😃
@piyushgupta18112 жыл бұрын
Thanks!
@torcida2142 жыл бұрын
hello, thanks for the videos! Did you do any via the Fourier Transform? Something similar to the Laplace? thank you
@rotomflux4 жыл бұрын
I love the beginning, I also mess up my 5's and s's
@gradientattack4 жыл бұрын
Thank you Mathematic Marathons GOD!!!, we appreciate your big brain, but there are a topic, Limits, can you give us a marathon about it? (I'm learn English, I speak spanish )
@sinr26884 жыл бұрын
this is a good video for me to practice my engineering math :))
@dishant42224 жыл бұрын
Amazing & thanks
@anirudhnarasimhan73074 жыл бұрын
Thanks for keeping my quarantine filled. Love from India😍
@aymen_sahnoun4 жыл бұрын
thanks ... is there a marathon for fourier ?
@blackpenredpen4 жыл бұрын
We have to call up dr. Peyam for this! Lol
@aymen_sahnoun4 жыл бұрын
@@blackpenredpen is it really harder than Laplace and it's inverse and power series and the all mighty integral Marathon !??
@comingshoon27173 жыл бұрын
aqui, en pleno verano practicando, para no olvidarse de esto... un cracj bprp... saludos :)
@blaugios Жыл бұрын
According to f(t-a)*u(t-a) = iLapace{e^(-as)F(s)} , for a=0, all inverse Laplace transforms should be multiplied by u(t), am I right?
@ssdd99114 жыл бұрын
1:08:43 i realised it is possible to use cover up by substituting s^2=u and A and C is automatically 0
@aymanalgeria73024 жыл бұрын
That was too much fun . Isn't it
@julianmldc4 жыл бұрын
AMAZING AS ALWAYS
@MathswithMuneer4 жыл бұрын
José Julián Maldonado Camacho indeed
@blackscreen40334 жыл бұрын
You got some stamina!
@خلفابراهيم-ض5س4 жыл бұрын
Thank you very much Steve...continuous..we are all love you ❤❤❤
@MathswithMuneer4 жыл бұрын
خلف ابراهيم no doubt
@blackpenredpen4 жыл бұрын
Thanks!!!
@sarsoor14292 жыл бұрын
That face expression switch at 34:45
@stevenglowacki85762 жыл бұрын
Whenever I got a problem that stated "s" as a variable, my first line on my answer was "Let s = t" or something like that. S looks way too similar to 5 to be used a variable name. For the same reason, I have crossed hand-written every z for a very long time so that they don't look like 2.
@carultch Жыл бұрын
Write a cursive s, to tell it apart from a 5.
@jaredjones65703 жыл бұрын
2:02:17 and 2:02:31 reveal that an infinitesimal amount of exhaustion has affected the dual-pen-wielding Jedi master.
@rodwayworkor92024 жыл бұрын
Next up : W Lambert Marathon
@josammarenye40212 жыл бұрын
I feel so unlucky not being your student. Your teaching is eloquent ☺️
@williamfernandez41172 жыл бұрын
OMG Love this video
@charlesk51383 жыл бұрын
I love you. thank you.
@backtonature19234 жыл бұрын
1:43:10
@bludeat73984 жыл бұрын
on problem 8... why not add and substract s^2 on top?
@hari85684 жыл бұрын
Hey can u do a marathon on z transform and inverse z transform
@jeryipina23333 жыл бұрын
for question 4 could you complete the square and use laplace of e^-at*sinhbt? or is that wrong
@saisrirajnallam4 жыл бұрын
sir thank you very much for your greatest efforts sir.........❤❤❤
@prashantswami834511 ай бұрын
😅
@_witeK4 жыл бұрын
*Will you make a video with 100 limits ?*
@TheTalmon184 жыл бұрын
Dang I havent done laplace transforms since ODEs in my first year of uni. I graduated with an applied math bachelors back in 2016 but never had to do these again haha. Ive used the laplacian in PDEs many times but never these again😅. Blast from the past! Thanks for the video! Was able to do these since you mentioned LT is linear and with your note of what the laplace transform is its easy to go backwards Thank you!! Idk if Ill ever use this again (even in my masters when I start it) but it was fun to watch haha
@viniciusps013 жыл бұрын
Great!
@koffisamuel9517 Жыл бұрын
thank you so much professor can you do the same with fourier transform ?please
@ianmi4i7272 жыл бұрын
Wonderful 😊
@snakesocks4 жыл бұрын
Hi bprp! The link to the file doesn't work. It takes me to your website but there's no file attached to the inverse Laplace title.
@blackpenredpen4 жыл бұрын
Just updated. Thanks for letting me know.
@saatee1004 жыл бұрын
Corona in belgium big deal, pff we have blackpenredpen 👍
@blackpenredpen4 жыл бұрын
Thanks. And I wish you and your family safe and healthy.
@siyuanruan3404 Жыл бұрын
Hello, sir, I have a question on inverse laplace transform, how can we inverse laplace transform sqrt(pi/4s^3)?
@carultch10 ай бұрын
Non-integer powers of t have a Laplace transform that uses a function that interpolates the factorials, called the Gamma function. So where L{t^n} = n!/s^(n + 1), the corresponding Laplace transform of non-integer powers of t is: L{t^p} = Gamma(p + 1)/s^(p +1) For reasons I can't explain, the Gamma function is offset from the factorials by a shift of 1. Your given transform is: sqrt(pi/(4*s^3)) which we can rewrite as sqrt(pi/4) * 1/s^(3/2) This means (p+1) = 3/2, implying that the power p = 1/2. We want Gamma(3/2) to appear upstairs, so we multiply by 1 in a fancy way to achieve this: sqrt(pi/4)/Gamma(3/2) * Gamma(3/2)/s^(3/2) Now we can take the inverse Laplace and get: sqrt(pi/4)/Gamma(3/2) * t^(1/2) Special cases of the Gamma function occur half way between integers, where: Gamma(n + 1/2) = (product of odds up to 2*n-1)/2^n * sqrt(pi) Gamma(3/2) = (product of odds up to 1)/2^1 * sqrt(pi) = 1/2*sqrt(pi) Thus: sqrt(pi/4)/(1/2*sqrt(pi)) = 1 And our result is: sqrt(t)
@kulvirsharma69404 жыл бұрын
Good morning sir
@thomasfranzstockhammer78462 жыл бұрын
Lg /amazing video's
@froilanemeliano65514 жыл бұрын
i would totally give a like to tell u how helpful u are ♥️
@and123092 жыл бұрын
don't you have to multiply u(t) to the whole expression when taking the inverse laplace, or at least note that t > 0?
@xaviersson70474 жыл бұрын
stay safe everyone
@biscet62874 жыл бұрын
Marathon for integration with residues?
@akhileshray34782 жыл бұрын
I am using this marathon for exam preparation 😂 thanks btw 😁👍