You just helped me so much on my ODEs test. I wish my professor taught the way you did! Great job.
@blackpenredpen6 жыл бұрын
You're welcome! I hope you did well on the exam!
@Sleepy461692 жыл бұрын
Dear sir. Your final answer of the Y sub h is C sub 1e^t + C sub 2e^2t. Is it alright that the final answer of the Y sub h, its roots were shuffled? Like mine is C sub 1e^2t + C sub 2e^t. Is this the same?
@hugopurpeq Жыл бұрын
@@Sleepy46169 yes its the same
@betechtechnology9427 жыл бұрын
thank you very much you the best good techniques especially on 2nd derivative it could have been very very long
@--82514 жыл бұрын
ngl, I was too worried about the thermal detonator in his hand to focus on the problem
@kabirkohli99206 жыл бұрын
You're literally the reason I'm gonna pass my exam
@hans33310007 жыл бұрын
normally i just look at videos hopelessly and give up. then i found you, thank you for contributing to my 100% on the midterm. you're a lifesaver, i just couldn't learn this one by myself. ily no homo
@malikaOsman-i2m20 күн бұрын
he is the best teacher DEquation teacher out there
@nicoleng41813 жыл бұрын
16:36 yes i feel so accomplished hahah and omaigosh i've been finding a video that explains this well and you're the only one that I UNDERSTOOD SO WELL thank you
@ayodelerighteous2 жыл бұрын
You just salvaged my fast approaching mathematics examination!
@davidnigelsemuyaba11313 жыл бұрын
I do appreciate you for your service, you have rilly talented in teaching, may God 🙏 bless you
@ianmoseley99106 жыл бұрын
2B or negative 2B, that is the question ...
@dylongoodyear77185 жыл бұрын
lmao i enjoyed that
@nsifrahman90315 жыл бұрын
@@dylongoodyear7718 Can I enjoy you?
@mcleanephatha5 жыл бұрын
@@nsifrahman9031 You can enjoy me!
@hellmuth264 жыл бұрын
every time I have a 2B i say "or not to be," it's a terrible compulsion and I wish I could stop.
@xOxAdnanxOx5 жыл бұрын
all the way from the u world to differential equations, we been together my friend... thank you
@Engineering_conceptsUOM2 жыл бұрын
Thank you sir… you are my mathematics hero
@anamuslamh095 жыл бұрын
You the best 👍👍👍✅🏆🥇
@dr.10r2 күн бұрын
Veryyyy nice❤
@bukkiofuzi17253 жыл бұрын
I love how you handled the second derivative
@shoberino38983 жыл бұрын
14:49 “I didn’t even use a calculator so you guys can do this too” says the human calculator
@joshuastier2317 жыл бұрын
Dude you are fantastic thank you so much
@blackpenredpen7 жыл бұрын
Joshua Stier My pleasure to help!!!
@photomath43273 жыл бұрын
Exactly what have been searching for ...thank you so much 🙏🙏, your video have been helping
@tomriddle94897 ай бұрын
great😀
@jamalmanking39286 жыл бұрын
It so amazing please more videos please for the subject Deferential equation please.
@blackpenredpen6 жыл бұрын
I have many playlists on that already. Check out my channel home page.
@GisselMejiashortyeah Жыл бұрын
You are awesome. Thank you very much
@timotejfasiang2 жыл бұрын
The hardest part for this guy was distributing the - into the (A + B) at 7:35😂
@taekwondotime5 жыл бұрын
@1:30 How did you know it was going to be: *yp = Ae^tsin(t) + Be^tcos(t)* ? A bit more explanation is needed there. What happens if the equation is y'' - 3y' + 2y = 3t ? What happens if the equation is y'' - 3y' + 2y = tan(t) ? How does that piece change? Thanks.
@gokayfem5 жыл бұрын
you should check his differential equations playlist. there is variation of parameters method for tant and other types of undetermined coefficients methods for 3t, e^t kind of things.
@alvelymondragon334 жыл бұрын
I think it's from a table given.. that what i use actually
@carultch Жыл бұрын
If the function on the right hand side is linearly independent of the homogeneous solution, you directly match it with an arbitrary coefficient, and accompany it with other coefficients on its counterparts (more on that later). If it is a constant multiple of one of your solutions to the homogeneous solution, then you multiply by t until it isn't. For exponentials, the particular solution will also be exponential. For sine or cosine, or a linear combination of both of the same frequency, the particular solution will also be a linear combination of both of the same frequency. Likewise for exponentials, enveloping the sine and cosine. For constants, the particular solution will be a placeholder constant, not necessarily equal to your given constant For polynomials of t, the particular solution will be a polynomial of the same degree, and placeholder coefficients along the way. For anything else that isn't a linear combination of the above, you'd have to use another method, like variation of parameters.
@LL-kn1de6 жыл бұрын
Wow! This is so helpful. I wish I found this video earlier! Thank you !!!
@__IzanNafisRahman2 жыл бұрын
this guy is a real chad
@zhou41686 жыл бұрын
it is a good video, thanks. Already subscribed, hoping to watch more!
@blackpenredpen6 жыл бұрын
zhou coooool thanks!!!
@atone09095 жыл бұрын
Very nice
@aljoker30533 жыл бұрын
A coil of inductance L Henry and a capacitor of C Farad are connected in series if I=I0, Q=Q0 when t=0 Find: Q and I when t
@carultch Жыл бұрын
The corresponding diffEQ is: L*Q"(t) + Q(t)/C = 0 Characteristic equation: L*r^2 + r/C = 0 Solution for r: r = +/-i/sqrt(L*C) The solution for Q(t), is a linear combination of sine and cosine, with a frequency equal to the imaginary part of r: Q(t) = A*cos(sqrt(1/(L*C))*t) + B*cos(sqrt(1/(L*C))*t) At t=0, Q(0) = Q0, and I(0) = I0, which is the same thing as Q'(0). Find Q'(t), which is also I(t): Q'(t) = sqrt(1/(L*C))*(-A*sin(sqrt(1/(L*C))*t) + B*sin(sqrt(1/(L*C))*t)) At t=0, sine is zero, so the cosine terms govern. This means: A = Q0 B*sqrt(1/(L*C)) = I0, solve for B: B = I0*sqrt(L*C) Thus our result is: Q(t) = Q0*cos(sqrt(1/(L*C))*t) + I0*sqrt(L*C)*sin(sqrt(1/(L*C))*t) I(t) = sqrt(1/(L*C))*(-Q0*sin(sqrt(1/(L*C))*t) + I0*sqrt(L*C)*sin(sqrt(1/(L*C))*t))
@bandarhindi84506 жыл бұрын
your techniques are very helpful
@mumtazbegum34925 жыл бұрын
Very well ....super bro... thank u so much
@thomasjefferson6225 Жыл бұрын
I sincerely hate these problems
@TheGuroLOLITA4 жыл бұрын
You are soooooo goooood
@111abdurrahman5 жыл бұрын
you are serving the humanity dude!
@oluchukwuokoye8412 Жыл бұрын
Thank you for this video
@XLatMaths4 жыл бұрын
Why don't you have to set the particular integral to A*te^t*sin(t)..., the auxiliary equation already has e^t as one of its components. Don't you have to multiply the P.I. by one power of the variable when one of the auxiliary equation's roots is in the RHS?
@amzayd4 жыл бұрын
I have the same question!!!
@zingaphiranana84252 жыл бұрын
@@amzayd he made a mistake
@ernestschoenmakers8181 Жыл бұрын
@@zingaphiranana8425 Yes he did cause at 12:25 he plugged in -A + B but it should be -A + 3B, so A and B are miscalculated.
@Ayeventy5 жыл бұрын
A million times better than my professor
@elisamarconell99913 жыл бұрын
thank you kind sir
@Channel-uf6ko Жыл бұрын
I can't find any video on the internet doing a combination of polynomial, exponential, and sin and cosine :((
@tejagandreti6 жыл бұрын
Tq so much bro very gud explanation
@edgarb.61874 жыл бұрын
Ive been looking for examples of X^n*sin(x) Or X^n*cos(x) But haven't seen any on youtube. Any one know some links? Thanks.
@wajeehalamoudi59459 ай бұрын
is there any previous illustration video such #18 or 4?
@wzablonkalivo28186 жыл бұрын
great work. no need to attend to attend to my lecture
@tyronekim35067 жыл бұрын
Excellent video. Thanks!
@cadendennis30194 жыл бұрын
That was awesome
@elnathanlynd54186 жыл бұрын
Amazing
@Eta_Carinae__6 жыл бұрын
B=-1/2 not 1/2. Otherwise -A-B=0 isn't satisfied. Final answer should read: y=C1e^t+C2-(1/2)(e^t)sin(t)-(1/2)(e^t)cos(t)
@jonhsmith3745 Жыл бұрын
-(-1/2)-(1/2) = 0
@feelingepic60875 жыл бұрын
Thank u so so much for helping me...now i understand it clearly
@cyberwarrior52177 жыл бұрын
oh my god..you make it easy for me..and you r soo funny
@tomatrix75254 жыл бұрын
Unbelievable!
@tungamiraiaaron17846 жыл бұрын
u are the best
@bandarhindi84506 жыл бұрын
Thanks a lot. The video helped me a lot you are awesome
@kazshoichi93695 жыл бұрын
I feel so accomplished indeed my man
@antonellaa71206 жыл бұрын
I UNDERSTOOD EVERYTHING!!! GOD BLESS YOUUU
@blackpenredpen6 жыл бұрын
Thanks
@himanshubanate90616 жыл бұрын
nice sir thank u so much
@hapias93005 жыл бұрын
Thank you well explained.
@icee5626 жыл бұрын
wow, EXTREMLY helpful!!!!!
@_ssodaaa5 жыл бұрын
In particular sol. Can I consider yp= Ae^t sin(t) not yp= Ae^t sin(t) + Be^t cos(t) ? Because A&B are abitary const.
@carultch Жыл бұрын
Only if you are "lucky" enough that B=0. For this method, you have to account for the possibility that both sine and cosine will play a role in the result, until you rule out the possibility.
@deorum596 жыл бұрын
Not all heroes wear capes... Thanks
@jonhsmith3745 Жыл бұрын
banging video
@ahmedbelloe39233 жыл бұрын
I used De-operator method and it was much easier and fast too. I had the same answer
@AdnanAdnan-hd7co2 жыл бұрын
ارجو حل الكثير من المعادلات التفاضليه
@joshuammaina49116 жыл бұрын
Can you please do one with the differential operator Pretty please with chocolate frosting on the top
Another useful video. But I think it's quite dangerous that you're holding a thermal detonator haha
@FS-zt6tm3 жыл бұрын
what would the general formula be for yp if the right side is e^x(6cosx +17sinx). I'm struggling with trig functions. I know how to do the derivatives, I'm just not sure what to start with.
@carultch Жыл бұрын
Given an RHS of e^x * (6*cos(x) + 17*sin(x)) The general form of the yp particular solution would be: e^x * (A*cos(x) + B*sin(x)) As long as your given linear combination of sine and cosine both have the same frequency, they both correspond to the particular solution being a linear combination of the two. The e^x applies to both of them. Also important is that we don't overlap the homogeneous solutions, otherwise we'd need to multiply by t until it is linearly independent. As an example: y" + y = e^x * (6*cos(x) + 17*sin(x)) While this may look like there is overlap, there really isn't. We'd have to have y" - 2*y' + 2*y = e^x * (6*cos(x) + 17*sin(x)), to have overlap, since the homogeneous solutions of this one, also include the exponential envelope on the trig functions. The homogeneous solution: yh = A*cos(x) + B*sin(x) The particular solution: yp = e^(x) * (C*cos(x) + D*sin(x)) Differentiate twice: yp' = e^x * ((D - C)*sin(x) + (C + D)*cos(x)) yp" = 2*e^x * (D*cos(x) - C*sin(x)) Apply to original diffEQ, and equate coefs to find C & D: 2*e^x * (D*cos(x) - C*sin(x)) + e^(x) * (C*cos(x) + D*sin(x)) = e^x * (6*cos(x) + 17*sin(x)) Cancel common e^x factor: 2* (D*cos(x) - C*sin(x)) + (C*cos(x) + D*sin(x)) = 6*cos(x) + 17*sin(x) Thus, equating coefs we get: 2*D + C = 6 -2*C + D = 17 Solve for C & D: C = -28/5, D = 29/5. Thus the solution is: y = A*cos(x) + B*sin(x) + e^x*(-28/5*cos(x) + 29/5*sin(x))
@TheIvar193 жыл бұрын
I just don´t get why we need the Yh solution. Isn´t Yp enough? What does the Homogenous solution add?
@carultch Жыл бұрын
yp only solves a special case of initial conditions, that the coefficients in front of the yh parts diminish to zero. The yh part is the transient response from initial conditions, while the yp part is the steady state response that governs what it will be, once the initial conditions are effectively out of the picture. As an example, given: y" + 4*y' + 3*y = 10*cos(t) The homogeneous solution is: yh = A*e^(-t) + B*e^(-3*t) The particular solution is: yp = 2*sin(t) + cos(t) In the special case that our conditions start on the curve of yp, then the coefficients A and B both become zero, and we don't need the homogeneous part. This would happen if, in this example, y(0) = 1, and y'(0) = 2. What the homogeneous part adds, is the ability for the system to start at any set of initial conditions, and exponentially decay to eventually match the particular solution.
@bhaswatighosh39696 жыл бұрын
Can u solve some hardest problems in nth order eqn
@arvandvedadi24577 жыл бұрын
bro you are the best thank you so much man!
@jacksoncarter63524 жыл бұрын
Perfect thanks
@terrencemadanhi88336 жыл бұрын
thank you brother.you are supper
@mastermfundisombhokane57314 жыл бұрын
maVuti maths 3 where are you? send a shout out!
@jacksantoro1827 жыл бұрын
thank you very helpful
@arnelmananghaya75885 жыл бұрын
thank you so much, my friend!!
@eddiekanhai6 жыл бұрын
Thank you so much, this helped me a great amount !
@Dr.Reactor3 жыл бұрын
channel name: blackpenredpen Blue pen: Am I a joke to you??
@Goosebump_guy Жыл бұрын
How could differential Ae^t(sint) still be Ae^t(cost)+Ae^t(sint)?????dont u have to differentiate e^t into te^t ???
@farissh39244 жыл бұрын
thanku
@AndromedaIX5 жыл бұрын
You mentioned it was the superposition principle. Is it the same method as used for circuit analysis?
@carultch Жыл бұрын
It's a similar concept. Essentially, to simplify the equation, you break it up into two sub-equations that both also need to be satisfied, and work out how to satisfy both parts individually. And then form a solution that is a linear combination of the two.
@hayatomcreverse79257 жыл бұрын
Bai maayo kayka this helps a lot T.T
@Cannongabang7 жыл бұрын
hello blackpenredpen... is the integral sqrt[(x^4-1)/(c-x)] dx solvable???
@DaQwertyKidNL7 жыл бұрын
No
@pushpanjalinayak27655 жыл бұрын
Thank you so much
@josemuygay88515 жыл бұрын
thanks for uploading this!
@debbiekalima4541 Жыл бұрын
thank u so much
@sabikasarwat41863 жыл бұрын
What should be the method of solving this equation D2y/dt2 _ dy/dt _2y= 5 cosh(2t)....by undetermined method....kindly help plzzz
@carultch Жыл бұрын
Assuming your underscores mean +, we're given: y"(t) + y'(t) + 2*y = 5*cosh(2*t) You can use undetermined coefficients, since cosh is just a linear combination of two exponentials. I'll assume a particular ansatz, of a linear combination of cosh and sinh. First find the homogeneous solution: yh" + yh' + 2*yh = 0 (r^2 + r + 2)*e^(r*t) = 0 (r^2 + r + 2) = 0 r = (-1 +/- sqrt(1 - 8))/2 r = -1/2 +/- i*sqrt(7)/2 Thus: yh = e^(-t/2) * (A*cos(t*sqrt(7)/2)) + B*sin(t*sqrt(7)/2))) For the particular solution: yp = C*cosh(2*t) + D*sin(2*t) Apply to original diffEQ, and match coefs: yp' = 2*C*sinh(2*t) + 2*D*cosh(2*t) yp" = 4*C*cosh(2*t) + 4*D*sinh(2*t) Thus: 4*C*cosh(2*t) + 4*D*sinh(2*t) + 2*C*sinh(2*t) + 2*D*cosh(2*t) + 2*C*cosh(2*t) + 2*D*sinh(2*t) = 5*cosh(2*t) 4*C + 2*D + 2*C = 5 4*D + 2*C + 2*D = 0 solution for C&D: C = 15/16, D = -5/16 Thus, the solution is: y = e^(-t/2) * (A*cos(t*sqrt(7)/2)) + B*sin(t*sqrt(7)/2))) + 15/16*cosh(2*t) - 5/16*sinh(2*t)
@liujinpeng26355 жыл бұрын
好像就我一个中国人哈哈,祝您2020新年快乐!
@strongerwithstubsstretch34724 жыл бұрын
thank you sir!
@bakkamanthulamohansai34302 жыл бұрын
Super super super
@dmorgan06287 жыл бұрын
I'm taking calc2 again this summer and diffeq this fall. This video is scary!
@cyberwarrior52177 жыл бұрын
Dan Morgan hahahha summer..I hate summer
@marvinzhang37344 жыл бұрын
hey man, how do you guess there is a cost??
@michaelvivirito4 жыл бұрын
Do you have any higher order examples?
@blackpenredpen4 жыл бұрын
Like what order? I have a video on the 6th order with complex numbers
@michaelvivirito4 жыл бұрын
blackpenredpen I feel like I’m taking to a celebrity. You are one of my favorite KZbinrs! I was thinking something like y’’’+8y’’+19y’+12y=270e^(2t)
@michaelvivirito4 жыл бұрын
Also adding some initial conditions and getting the full y(t)
@lesegomokgabudi57985 жыл бұрын
thanks bro
@mtahir91814 жыл бұрын
Thank You.
@sunitalymon19253 жыл бұрын
him: whenever there's sin we must have cosine me: say no more.
@sadam_sushi5 жыл бұрын
Thanks
@DawgFL3 жыл бұрын
WHAT IS THE GUESS FOR A CONSTANT TO THE POWER OF X?? eg. 2 + 2^x
@carultch Жыл бұрын
Good question. If your term on the RHS of the original equation is 2^x, recognize that this is really the same family of functions as e^x, since it is also exponential. Therefore, the particular solution would involve linear combinations of 2^x, or alternatively, e^(ln(2)*x).
@rubaiyamurshed91766 жыл бұрын
if there is no sinx on the right side,but have "2+3x-e^2x" on the right side,what will happen?
@mlambo.n44116 жыл бұрын
linear and exponent function at the same time then evaluate them separately then sum up your solution y=y1+y2+y3 as your particular solution
@kevinmanuel93736 жыл бұрын
I have a question. Shouldnt the Yp be te^t(sin t) ??
@jhazyloumonteza89855 жыл бұрын
Yah. I'm confused too. Looks like it's a resonance case.