undetermined coefficients, diff eq, sect4.5#19

  Рет қаралды 263,281

blackpenredpen

blackpenredpen

Күн бұрын

Пікірлер: 179
@boing7771000
@boing7771000 6 жыл бұрын
I love how enthusiastic and natural this guy is:)
@nahdoodavis3924
@nahdoodavis3924 6 жыл бұрын
You just helped me so much on my ODEs test. I wish my professor taught the way you did! Great job.
@blackpenredpen
@blackpenredpen 6 жыл бұрын
You're welcome! I hope you did well on the exam!
@Sleepy46169
@Sleepy46169 2 жыл бұрын
Dear sir. Your final answer of the Y sub h is C sub 1e^t + C sub 2e^2t. Is it alright that the final answer of the Y sub h, its roots were shuffled? Like mine is C sub 1e^2t + C sub 2e^t. Is this the same?
@hugopurpeq
@hugopurpeq Жыл бұрын
@@Sleepy46169 yes its the same
@betechtechnology942
@betechtechnology942 7 жыл бұрын
thank you very much you the best good techniques especially on 2nd derivative it could have been very very long
@--8251
@--8251 4 жыл бұрын
ngl, I was too worried about the thermal detonator in his hand to focus on the problem
@kabirkohli9920
@kabirkohli9920 6 жыл бұрын
You're literally the reason I'm gonna pass my exam
@hans3331000
@hans3331000 7 жыл бұрын
normally i just look at videos hopelessly and give up. then i found you, thank you for contributing to my 100% on the midterm. you're a lifesaver, i just couldn't learn this one by myself. ily no homo
@malikaOsman-i2m
@malikaOsman-i2m 20 күн бұрын
he is the best teacher DEquation teacher out there
@nicoleng4181
@nicoleng4181 3 жыл бұрын
16:36 yes i feel so accomplished hahah and omaigosh i've been finding a video that explains this well and you're the only one that I UNDERSTOOD SO WELL thank you
@ayodelerighteous
@ayodelerighteous 2 жыл бұрын
You just salvaged my fast approaching mathematics examination!
@davidnigelsemuyaba1131
@davidnigelsemuyaba1131 3 жыл бұрын
I do appreciate you for your service, you have rilly talented in teaching, may God 🙏 bless you
@ianmoseley9910
@ianmoseley9910 6 жыл бұрын
2B or negative 2B, that is the question ...
@dylongoodyear7718
@dylongoodyear7718 5 жыл бұрын
lmao i enjoyed that
@nsifrahman9031
@nsifrahman9031 5 жыл бұрын
@@dylongoodyear7718 Can I enjoy you?
@mcleanephatha
@mcleanephatha 5 жыл бұрын
@@nsifrahman9031 You can enjoy me!
@hellmuth26
@hellmuth26 4 жыл бұрын
every time I have a 2B i say "or not to be," it's a terrible compulsion and I wish I could stop.
@xOxAdnanxOx
@xOxAdnanxOx 5 жыл бұрын
all the way from the u world to differential equations, we been together my friend... thank you
@Engineering_conceptsUOM
@Engineering_conceptsUOM 2 жыл бұрын
Thank you sir… you are my mathematics hero
@anamuslamh09
@anamuslamh09 5 жыл бұрын
You the best 👍👍👍✅🏆🥇
@dr.10r
@dr.10r 2 күн бұрын
Veryyyy nice❤
@bukkiofuzi1725
@bukkiofuzi1725 3 жыл бұрын
I love how you handled the second derivative
@shoberino3898
@shoberino3898 3 жыл бұрын
14:49 “I didn’t even use a calculator so you guys can do this too” says the human calculator
@joshuastier231
@joshuastier231 7 жыл бұрын
Dude you are fantastic thank you so much
@blackpenredpen
@blackpenredpen 7 жыл бұрын
Joshua Stier My pleasure to help!!!
@photomath4327
@photomath4327 3 жыл бұрын
Exactly what have been searching for ...thank you so much 🙏🙏, your video have been helping
@tomriddle9489
@tomriddle9489 7 ай бұрын
great😀
@jamalmanking3928
@jamalmanking3928 6 жыл бұрын
It so amazing please more videos please for the subject Deferential equation please.
@blackpenredpen
@blackpenredpen 6 жыл бұрын
I have many playlists on that already. Check out my channel home page.
@GisselMejiashortyeah
@GisselMejiashortyeah Жыл бұрын
You are awesome. Thank you very much
@timotejfasiang
@timotejfasiang 2 жыл бұрын
The hardest part for this guy was distributing the - into the (A + B) at 7:35😂
@taekwondotime
@taekwondotime 5 жыл бұрын
@1:30 How did you know it was going to be: *yp = Ae^tsin(t) + Be^tcos(t)* ? A bit more explanation is needed there. What happens if the equation is y'' - 3y' + 2y = 3t ? What happens if the equation is y'' - 3y' + 2y = tan(t) ? How does that piece change? Thanks.
@gokayfem
@gokayfem 5 жыл бұрын
you should check his differential equations playlist. there is variation of parameters method for tant and other types of undetermined coefficients methods for 3t, e^t kind of things.
@alvelymondragon33
@alvelymondragon33 4 жыл бұрын
I think it's from a table given.. that what i use actually
@carultch
@carultch Жыл бұрын
If the function on the right hand side is linearly independent of the homogeneous solution, you directly match it with an arbitrary coefficient, and accompany it with other coefficients on its counterparts (more on that later). If it is a constant multiple of one of your solutions to the homogeneous solution, then you multiply by t until it isn't. For exponentials, the particular solution will also be exponential. For sine or cosine, or a linear combination of both of the same frequency, the particular solution will also be a linear combination of both of the same frequency. Likewise for exponentials, enveloping the sine and cosine. For constants, the particular solution will be a placeholder constant, not necessarily equal to your given constant For polynomials of t, the particular solution will be a polynomial of the same degree, and placeholder coefficients along the way. For anything else that isn't a linear combination of the above, you'd have to use another method, like variation of parameters.
@LL-kn1de
@LL-kn1de 6 жыл бұрын
Wow! This is so helpful. I wish I found this video earlier! Thank you !!!
@__IzanNafisRahman
@__IzanNafisRahman 2 жыл бұрын
this guy is a real chad
@zhou4168
@zhou4168 6 жыл бұрын
it is a good video, thanks. Already subscribed, hoping to watch more!
@blackpenredpen
@blackpenredpen 6 жыл бұрын
zhou coooool thanks!!!
@atone0909
@atone0909 5 жыл бұрын
Very nice
@aljoker3053
@aljoker3053 3 жыл бұрын
A coil of inductance L Henry and a capacitor of C Farad are connected in series if I=I0, Q=Q0 when t=0 Find: Q and I when t
@carultch
@carultch Жыл бұрын
The corresponding diffEQ is: L*Q"(t) + Q(t)/C = 0 Characteristic equation: L*r^2 + r/C = 0 Solution for r: r = +/-i/sqrt(L*C) The solution for Q(t), is a linear combination of sine and cosine, with a frequency equal to the imaginary part of r: Q(t) = A*cos(sqrt(1/(L*C))*t) + B*cos(sqrt(1/(L*C))*t) At t=0, Q(0) = Q0, and I(0) = I0, which is the same thing as Q'(0). Find Q'(t), which is also I(t): Q'(t) = sqrt(1/(L*C))*(-A*sin(sqrt(1/(L*C))*t) + B*sin(sqrt(1/(L*C))*t)) At t=0, sine is zero, so the cosine terms govern. This means: A = Q0 B*sqrt(1/(L*C)) = I0, solve for B: B = I0*sqrt(L*C) Thus our result is: Q(t) = Q0*cos(sqrt(1/(L*C))*t) + I0*sqrt(L*C)*sin(sqrt(1/(L*C))*t) I(t) = sqrt(1/(L*C))*(-Q0*sin(sqrt(1/(L*C))*t) + I0*sqrt(L*C)*sin(sqrt(1/(L*C))*t))
@bandarhindi8450
@bandarhindi8450 6 жыл бұрын
your techniques are very helpful
@mumtazbegum3492
@mumtazbegum3492 5 жыл бұрын
Very well ....super bro... thank u so much
@thomasjefferson6225
@thomasjefferson6225 Жыл бұрын
I sincerely hate these problems
@TheGuroLOLITA
@TheGuroLOLITA 4 жыл бұрын
You are soooooo goooood
@111abdurrahman
@111abdurrahman 5 жыл бұрын
you are serving the humanity dude!
@oluchukwuokoye8412
@oluchukwuokoye8412 Жыл бұрын
Thank you for this video
@XLatMaths
@XLatMaths 4 жыл бұрын
Why don't you have to set the particular integral to A*te^t*sin(t)..., the auxiliary equation already has e^t as one of its components. Don't you have to multiply the P.I. by one power of the variable when one of the auxiliary equation's roots is in the RHS?
@amzayd
@amzayd 4 жыл бұрын
I have the same question!!!
@zingaphiranana8425
@zingaphiranana8425 2 жыл бұрын
@@amzayd he made a mistake
@ernestschoenmakers8181
@ernestschoenmakers8181 Жыл бұрын
@@zingaphiranana8425 Yes he did cause at 12:25 he plugged in -A + B but it should be -A + 3B, so A and B are miscalculated.
@Ayeventy
@Ayeventy 5 жыл бұрын
A million times better than my professor
@elisamarconell9991
@elisamarconell9991 3 жыл бұрын
thank you kind sir
@Channel-uf6ko
@Channel-uf6ko Жыл бұрын
I can't find any video on the internet doing a combination of polynomial, exponential, and sin and cosine :((
@tejagandreti
@tejagandreti 6 жыл бұрын
Tq so much bro very gud explanation
@edgarb.6187
@edgarb.6187 4 жыл бұрын
Ive been looking for examples of X^n*sin(x) Or X^n*cos(x) But haven't seen any on youtube. Any one know some links? Thanks.
@wajeehalamoudi5945
@wajeehalamoudi5945 9 ай бұрын
is there any previous illustration video such #18 or 4?
@wzablonkalivo2818
@wzablonkalivo2818 6 жыл бұрын
great work. no need to attend to attend to my lecture
@tyronekim3506
@tyronekim3506 7 жыл бұрын
Excellent video. Thanks!
@cadendennis3019
@cadendennis3019 4 жыл бұрын
That was awesome
@elnathanlynd5418
@elnathanlynd5418 6 жыл бұрын
Amazing
@Eta_Carinae__
@Eta_Carinae__ 6 жыл бұрын
B=-1/2 not 1/2. Otherwise -A-B=0 isn't satisfied. Final answer should read: y=C1e^t+C2-(1/2)(e^t)sin(t)-(1/2)(e^t)cos(t)
@jonhsmith3745
@jonhsmith3745 Жыл бұрын
-(-1/2)-(1/2) = 0
@feelingepic6087
@feelingepic6087 5 жыл бұрын
Thank u so so much for helping me...now i understand it clearly
@cyberwarrior5217
@cyberwarrior5217 7 жыл бұрын
oh my god..you make it easy for me..and you r soo funny
@tomatrix7525
@tomatrix7525 4 жыл бұрын
Unbelievable!
@tungamiraiaaron1784
@tungamiraiaaron1784 6 жыл бұрын
u are the best
@bandarhindi8450
@bandarhindi8450 6 жыл бұрын
Thanks a lot. The video helped me a lot you are awesome
@kazshoichi9369
@kazshoichi9369 5 жыл бұрын
I feel so accomplished indeed my man
@antonellaa7120
@antonellaa7120 6 жыл бұрын
I UNDERSTOOD EVERYTHING!!! GOD BLESS YOUUU
@blackpenredpen
@blackpenredpen 6 жыл бұрын
Thanks
@himanshubanate9061
@himanshubanate9061 6 жыл бұрын
nice sir thank u so much
@hapias9300
@hapias9300 5 жыл бұрын
Thank you well explained.
@icee562
@icee562 6 жыл бұрын
wow, EXTREMLY helpful!!!!!
@_ssodaaa
@_ssodaaa 5 жыл бұрын
In particular sol. Can I consider yp= Ae^t sin(t) not yp= Ae^t sin(t) + Be^t cos(t) ? Because A&B are abitary const.
@carultch
@carultch Жыл бұрын
Only if you are "lucky" enough that B=0. For this method, you have to account for the possibility that both sine and cosine will play a role in the result, until you rule out the possibility.
@deorum59
@deorum59 6 жыл бұрын
Not all heroes wear capes... Thanks
@jonhsmith3745
@jonhsmith3745 Жыл бұрын
banging video
@ahmedbelloe3923
@ahmedbelloe3923 3 жыл бұрын
I used De-operator method and it was much easier and fast too. I had the same answer
@AdnanAdnan-hd7co
@AdnanAdnan-hd7co 2 жыл бұрын
ارجو حل الكثير من المعادلات التفاضليه
@joshuammaina4911
@joshuammaina4911 6 жыл бұрын
Can you please do one with the differential operator Pretty please with chocolate frosting on the top
@aprotutor
@aprotutor 3 жыл бұрын
Operator Method: Auxiliary equation: r^2-3r+2=0 (r-1)(r-2)=0 r=1,2 Complementary solution y_0=C_1 e^x+C_2 e^2x (D-1)(D-2)y=e^x sin⁡x Particular solution y_p=1/(D-1)(D-2) (e^x sin⁡x) =e^x 1/(D+1-1)(D+1-2) (sin⁡x) =e^x 1/D(D-1) (sin⁡x) =e^x 1/((D^2-D) ) (sin⁡x) =e^x 1/((-1-D) ) (sin⁡x) =〖-e〗^x ((D-1))/((D^2-1) ) (sin⁡x) =〖-e〗^x ((D-1))/((-1-1) ) (sin⁡x) =〖-e〗^x ((D-1))/((-2) ) (sin⁡x) =e^x/2 (cos x-sin⁡x) General solution y=y_0+y_p=C_1 e^x+C_2 e^2x+e^x/2 (cos x-sin⁡x)
@wraster07hp36
@wraster07hp36 3 жыл бұрын
Thanks bro.
@olivierbkofficial9426
@olivierbkofficial9426 7 жыл бұрын
My God!!!! you're just amazing ,thx
@F19991
@F19991 5 жыл бұрын
Another useful video. But I think it's quite dangerous that you're holding a thermal detonator haha
@FS-zt6tm
@FS-zt6tm 3 жыл бұрын
what would the general formula be for yp if the right side is e^x(6cosx +17sinx). I'm struggling with trig functions. I know how to do the derivatives, I'm just not sure what to start with.
@carultch
@carultch Жыл бұрын
Given an RHS of e^x * (6*cos(x) + 17*sin(x)) The general form of the yp particular solution would be: e^x * (A*cos(x) + B*sin(x)) As long as your given linear combination of sine and cosine both have the same frequency, they both correspond to the particular solution being a linear combination of the two. The e^x applies to both of them. Also important is that we don't overlap the homogeneous solutions, otherwise we'd need to multiply by t until it is linearly independent. As an example: y" + y = e^x * (6*cos(x) + 17*sin(x)) While this may look like there is overlap, there really isn't. We'd have to have y" - 2*y' + 2*y = e^x * (6*cos(x) + 17*sin(x)), to have overlap, since the homogeneous solutions of this one, also include the exponential envelope on the trig functions. The homogeneous solution: yh = A*cos(x) + B*sin(x) The particular solution: yp = e^(x) * (C*cos(x) + D*sin(x)) Differentiate twice: yp' = e^x * ((D - C)*sin(x) + (C + D)*cos(x)) yp" = 2*e^x * (D*cos(x) - C*sin(x)) Apply to original diffEQ, and equate coefs to find C & D: 2*e^x * (D*cos(x) - C*sin(x)) + e^(x) * (C*cos(x) + D*sin(x)) = e^x * (6*cos(x) + 17*sin(x)) Cancel common e^x factor: 2* (D*cos(x) - C*sin(x)) + (C*cos(x) + D*sin(x)) = 6*cos(x) + 17*sin(x) Thus, equating coefs we get: 2*D + C = 6 -2*C + D = 17 Solve for C & D: C = -28/5, D = 29/5. Thus the solution is: y = A*cos(x) + B*sin(x) + e^x*(-28/5*cos(x) + 29/5*sin(x))
@TheIvar19
@TheIvar19 3 жыл бұрын
I just don´t get why we need the Yh solution. Isn´t Yp enough? What does the Homogenous solution add?
@carultch
@carultch Жыл бұрын
yp only solves a special case of initial conditions, that the coefficients in front of the yh parts diminish to zero. The yh part is the transient response from initial conditions, while the yp part is the steady state response that governs what it will be, once the initial conditions are effectively out of the picture. As an example, given: y" + 4*y' + 3*y = 10*cos(t) The homogeneous solution is: yh = A*e^(-t) + B*e^(-3*t) The particular solution is: yp = 2*sin(t) + cos(t) In the special case that our conditions start on the curve of yp, then the coefficients A and B both become zero, and we don't need the homogeneous part. This would happen if, in this example, y(0) = 1, and y'(0) = 2. What the homogeneous part adds, is the ability for the system to start at any set of initial conditions, and exponentially decay to eventually match the particular solution.
@bhaswatighosh3969
@bhaswatighosh3969 6 жыл бұрын
Can u solve some hardest problems in nth order eqn
@arvandvedadi2457
@arvandvedadi2457 7 жыл бұрын
bro you are the best thank you so much man!
@jacksoncarter6352
@jacksoncarter6352 4 жыл бұрын
Perfect thanks
@terrencemadanhi8833
@terrencemadanhi8833 6 жыл бұрын
thank you brother.you are supper
@mastermfundisombhokane5731
@mastermfundisombhokane5731 4 жыл бұрын
maVuti maths 3 where are you? send a shout out!
@jacksantoro182
@jacksantoro182 7 жыл бұрын
thank you very helpful
@arnelmananghaya7588
@arnelmananghaya7588 5 жыл бұрын
thank you so much, my friend!!
@eddiekanhai
@eddiekanhai 6 жыл бұрын
Thank you so much, this helped me a great amount !
@Dr.Reactor
@Dr.Reactor 3 жыл бұрын
channel name: blackpenredpen Blue pen: Am I a joke to you??
@Goosebump_guy
@Goosebump_guy Жыл бұрын
How could differential Ae^t(sint) still be Ae^t(cost)+Ae^t(sint)?????dont u have to differentiate e^t into te^t ???
@farissh3924
@farissh3924 4 жыл бұрын
thanku
@AndromedaIX
@AndromedaIX 5 жыл бұрын
You mentioned it was the superposition principle. Is it the same method as used for circuit analysis?
@carultch
@carultch Жыл бұрын
It's a similar concept. Essentially, to simplify the equation, you break it up into two sub-equations that both also need to be satisfied, and work out how to satisfy both parts individually. And then form a solution that is a linear combination of the two.
@hayatomcreverse7925
@hayatomcreverse7925 7 жыл бұрын
Bai maayo kayka this helps a lot T.T
@Cannongabang
@Cannongabang 7 жыл бұрын
hello blackpenredpen... is the integral sqrt[(x^4-1)/(c-x)] dx solvable???
@DaQwertyKidNL
@DaQwertyKidNL 7 жыл бұрын
No
@pushpanjalinayak2765
@pushpanjalinayak2765 5 жыл бұрын
Thank you so much
@josemuygay8851
@josemuygay8851 5 жыл бұрын
thanks for uploading this!
@debbiekalima4541
@debbiekalima4541 Жыл бұрын
thank u so much
@sabikasarwat4186
@sabikasarwat4186 3 жыл бұрын
What should be the method of solving this equation D2y/dt2 _ dy/dt _2y= 5 cosh(2t)....by undetermined method....kindly help plzzz
@carultch
@carultch Жыл бұрын
Assuming your underscores mean +, we're given: y"(t) + y'(t) + 2*y = 5*cosh(2*t) You can use undetermined coefficients, since cosh is just a linear combination of two exponentials. I'll assume a particular ansatz, of a linear combination of cosh and sinh. First find the homogeneous solution: yh" + yh' + 2*yh = 0 (r^2 + r + 2)*e^(r*t) = 0 (r^2 + r + 2) = 0 r = (-1 +/- sqrt(1 - 8))/2 r = -1/2 +/- i*sqrt(7)/2 Thus: yh = e^(-t/2) * (A*cos(t*sqrt(7)/2)) + B*sin(t*sqrt(7)/2))) For the particular solution: yp = C*cosh(2*t) + D*sin(2*t) Apply to original diffEQ, and match coefs: yp' = 2*C*sinh(2*t) + 2*D*cosh(2*t) yp" = 4*C*cosh(2*t) + 4*D*sinh(2*t) Thus: 4*C*cosh(2*t) + 4*D*sinh(2*t) + 2*C*sinh(2*t) + 2*D*cosh(2*t) + 2*C*cosh(2*t) + 2*D*sinh(2*t) = 5*cosh(2*t) 4*C + 2*D + 2*C = 5 4*D + 2*C + 2*D = 0 solution for C&D: C = 15/16, D = -5/16 Thus, the solution is: y = e^(-t/2) * (A*cos(t*sqrt(7)/2)) + B*sin(t*sqrt(7)/2))) + 15/16*cosh(2*t) - 5/16*sinh(2*t)
@liujinpeng2635
@liujinpeng2635 5 жыл бұрын
好像就我一个中国人哈哈,祝您2020新年快乐!
@strongerwithstubsstretch3472
@strongerwithstubsstretch3472 4 жыл бұрын
thank you sir!
@bakkamanthulamohansai3430
@bakkamanthulamohansai3430 2 жыл бұрын
Super super super
@dmorgan0628
@dmorgan0628 7 жыл бұрын
I'm taking calc2 again this summer and diffeq this fall. This video is scary!
@cyberwarrior5217
@cyberwarrior5217 7 жыл бұрын
Dan Morgan hahahha summer..I hate summer
@marvinzhang3734
@marvinzhang3734 4 жыл бұрын
hey man, how do you guess there is a cost??
@michaelvivirito
@michaelvivirito 4 жыл бұрын
Do you have any higher order examples?
@blackpenredpen
@blackpenredpen 4 жыл бұрын
Like what order? I have a video on the 6th order with complex numbers
@michaelvivirito
@michaelvivirito 4 жыл бұрын
blackpenredpen I feel like I’m taking to a celebrity. You are one of my favorite KZbinrs! I was thinking something like y’’’+8y’’+19y’+12y=270e^(2t)
@michaelvivirito
@michaelvivirito 4 жыл бұрын
Also adding some initial conditions and getting the full y(t)
@lesegomokgabudi5798
@lesegomokgabudi5798 5 жыл бұрын
thanks bro
@mtahir9181
@mtahir9181 4 жыл бұрын
Thank You.
@sunitalymon1925
@sunitalymon1925 3 жыл бұрын
him: whenever there's sin we must have cosine me: say no more.
@sadam_sushi
@sadam_sushi 5 жыл бұрын
Thanks
@DawgFL
@DawgFL 3 жыл бұрын
WHAT IS THE GUESS FOR A CONSTANT TO THE POWER OF X?? eg. 2 + 2^x
@carultch
@carultch Жыл бұрын
Good question. If your term on the RHS of the original equation is 2^x, recognize that this is really the same family of functions as e^x, since it is also exponential. Therefore, the particular solution would involve linear combinations of 2^x, or alternatively, e^(ln(2)*x).
@rubaiyamurshed9176
@rubaiyamurshed9176 6 жыл бұрын
if there is no sinx on the right side,but have "2+3x-e^2x" on the right side,what will happen?
@mlambo.n4411
@mlambo.n4411 6 жыл бұрын
linear and exponent function at the same time then evaluate them separately then sum up your solution y=y1+y2+y3 as your particular solution
@kevinmanuel9373
@kevinmanuel9373 6 жыл бұрын
I have a question. Shouldnt the Yp be te^t(sin t) ??
@jhazyloumonteza8985
@jhazyloumonteza8985 5 жыл бұрын
Yah. I'm confused too. Looks like it's a resonance case.
@robbiemayer3573
@robbiemayer3573 3 жыл бұрын
the literal goat
Method of Undetermined Coefficients
16:32
MIT OpenCourseWare
Рет қаралды 79 М.
Undetermined Coefficients: Solving non-homogeneous ODEs
12:44
Dr. Trefor Bazett
Рет қаралды 429 М.
When you have a very capricious child 😂😘👍
00:16
Like Asiya
Рет қаралды 3 МЛН
She made herself an ear of corn from his marmalade candies🌽🌽🌽
00:38
Valja & Maxim Family
Рет қаралды 17 МЛН
Auxiliary equations with repeated roots
19:18
blackpenredpen
Рет қаралды 101 М.
Differential Equations: Undetermined Coefficients - Superposition Approach
22:14
Determine the form of a particular solution, sect 4.5#31
7:08
blackpenredpen
Рет қаралды 41 М.
undetermined coefficients, example 4 (KristaKingMath)
15:51
Krista King
Рет қаралды 46 М.
Method of Undetermined Coefficients - Non-Homogeneous Differential Equations
25:25
Physics Students Need to Know These 5 Methods for Differential Equations
30:36
Physics with Elliot
Рет қаралды 1,1 МЛН
Variation of Parameters || How to solve non-homogeneous ODEs
10:56
Dr. Trefor Bazett
Рет қаралды 171 М.
You probably haven't solved a quartic equation like this before!
12:59
When you have a very capricious child 😂😘👍
00:16
Like Asiya
Рет қаралды 3 МЛН