Plus simple :à la place de factoriser par x, tu peux factoriser par x^2 ,tu obtiens en haut la dérivée du numérateur donc la primitive est évidente 😋
@ThetaMaths6 ай бұрын
Après une bonne période de recherche, le changement de variable u=ln(x) puis multiplier le numérateur et dénominateur par e^(-u) permet de trouver le résultat. Je vais essayer de trouver une méthode faisable en terminale mais mes intégrations par partie restent pour le moment infructueuses
@ThetaMaths6 ай бұрын
Je viens de regarder ta solution, elle est très jolie, je n'avais pas pensé a diviser par x ! J'aime beaucoup tes vidéos, tes intuitions sont très agréables à écouter (quand tu abordes le log itéré par exemple). Étant moi même en terminale, je suis très content de voir que d'autres gens aiment autant les maths que moi !
@Matherminale6 ай бұрын
@@ThetaMaths Merci beaucoup, ça fait plaisir d'avoir des bons retours.
@nonoelcrackito77676 ай бұрын
on peut faire un changement de variable t= 1/x pour pour retrouver u'/u
@goldeer71296 ай бұрын
Ce que j'ai fait : je me précipite bien sûr sur le changement de variable u = lnx, x = e^u ultra naturel vu le lnx (qu'on aime pas trop) et les simples x, sans parler des bornes qui mènent directement à une intégrale entre 0 et 1. Ensuite on se retrouve essentiellement à intégrer (l'opposé de) 1-eᵘ / 1 + ueᵘ. La proximité du numérateur et dénominateur donne envie de chercher une primitive en v'/v (ln v) et on observe que la dérivée de ln(1+ueᵘ) est eᵘ + ueᵘ / 1+ueᵘ. On écrit 1-eᵘ comme 1 - eᵘ - ueᵘ + ueᵘ [technique du "+1 - 1"] et l'on sépare la fraction en deux, de façon justement à ce que l'un des deux termes vaille 1 et l'autre soit finalement - (eᵘ + ueᵘ) / (1 + ueᵘ). Bon et en bref il ne reste plus qu'à calculer avec cette primitive, et on tombe sur le résultat qui vaut -1 + ln(1+e) = ln(1+e^-1). (factoriser par e dans le ln et écrire -1 comme -ln(e)).
@Matherminale6 ай бұрын
C'est par cette méthode que j'ai fait la première fois, mais j'ai voulu rester sur du programme (même si c'est souvent très rageant)
@romain61386 ай бұрын
Il me semble avoir vu le changement de variable en Term perso, c'est dommage de ne pas le traiter pcq ici ca simplifie bien les calculs ! Tres jolie intégrale en tout cas ^^
@Matherminale6 ай бұрын
Il n'est plus au programme malheureusement. Dommage car il simplifié pas mal les calculs.
@romain61386 ай бұрын
@@MatherminaleAh oe dommage, après rien ne t'empêche de le faire, et puis je t'ai vu utiliser la propriété du roi, mais finalement la preuve provient d'un changement de variable.
@Matherminale6 ай бұрын
@@romain6138 On très facilement la démonter sans changement de variable, j'en ferai d'ailleurs une vidéo.
@romain61386 ай бұрын
@@Matherminale Ah ok je ne savais pas qu'il y avait d'autres démos, j'ai hâte de voir ça !
@Matherminale6 ай бұрын
Je me répète un peu dans mes minias 😅
@romain61386 ай бұрын
perso j'aime bien xd
@ThetaMaths6 ай бұрын
J'ai trouvé une intégrale trigonométrique particulièrement Retord Trouver une primitive de (1-10tan(x)^2+5tan(x)^4)/(5tan(x)-10tan(x)^3+tan(x)^5) (Il est vivement conseillé de calculer au préalable cos(5x) et sin(5x) en fonction de cos(x) et sin(x))