I would have given a standing ovation after each class I attended. 🙏 You're fabulous.
@PenguinTutor3 жыл бұрын
Great teaching style. Clear and easy to follow. At one point the answer came to me and I wanted to start shouting out the answer.
@sanjayyt51943 жыл бұрын
I love your teaching now I am also a teacher thank you sir
@mrigayu3 жыл бұрын
What an elegant proof! Just beautiful.
@tadejsivic5343 жыл бұрын
Amazing proof out of the blue. Just 2 lines, fabulous.
@akhildas42013 жыл бұрын
sir , you need to stop teaching students and start teaching teachers all over the world on ' how to teach '-❤️
@OverloadedOrama3 жыл бұрын
Amazing proof! Thank you very much!
@hectormendy41013 жыл бұрын
Sir your a magician ! ❤️
@calin54223 жыл бұрын
2:32 So hogwarts wasnt enough education for Hermione
@mil91023 жыл бұрын
lmaoo 😂
@joliettraveler3 жыл бұрын
Fantastic !!!! Great explanation and easy to follow.
@AverellPham3 жыл бұрын
Setup: - Name the quadrilateral ABCD - Name the mid points: E, F, G, H Proof: 1. EF is midliner of triangle ABC ==> EF is parallel to and equal to 1/2 AC 2. HG is midliner of triangle ADC ==> HG is parallel to and equal to 1/2 AC (1) + (2) ==> EF // HG and EF = HG. So EFGH is Parallelogram.
@franciskisner9203 жыл бұрын
Another short proof from geometry: Draw a diagonal dividing the quad into two triangles with a common base. Join the midpoints of the sides of a triangle and you form a line segment that is half the length of the base and parallel to it. Both of the constructed triangles then will give lines parallel to that common base and half its length. Parallelogram is proved.
@DeJay72 жыл бұрын
My mind was blown by how simply you put it and it seemed to make sense. I wonder if it could be proof.
@programaths Жыл бұрын
@@DeJay7 You've to admit Thales proof. So, he needs to add "(according to Thales theorem)", then it's a valid proof. Also, it uses Euclide axioms consequent (transitivity of parallels), but those rarely appears in proof (accepted as is).
@tambuwalmathsclass3 жыл бұрын
My mentor
@GodbornNoven8 ай бұрын
Beautiful proof, i thought it could simply be proven that it forms a parallelogram because of the midpoint theorem. The length of the line that connects the midpoints of the sides must always be half the length from the beginning to the end. And because its the same thing for the other set of sides. They are equal to half the line from the beginning to the end and are both parallel to it A//B, A//C => B//C 1/2 A = B, 1/2 A= C. B=C Thus, it must be a parallelogram.
@MuhammadAnas_Official Жыл бұрын
Love it
@aayanshrkumar5093 жыл бұрын
Good teaching
@gauravmathsacademy15723 жыл бұрын
Super explanation sir
@mmh19223 жыл бұрын
Midline properties of triangle is an easier proof. But it is nice to see a vector proof.
@programaths Жыл бұрын
You then need to prove midline of triangle or write you are using Thales theorem.
@Victor-zn4pn2 жыл бұрын
How would you prove the parallelism of the other two sides though? Explicitly, a parallelogram has 2 pairs of parallel sides. All we've proven here is that this shape has two sides that are parallel. This doesn't prove its a parallelogram, for a trapezium has the same properties, right? I'm sure similar steps could be used to find this out, but I feel like this could have been worth mentioning! For next time perhaps.
@Victor-zn4pn2 жыл бұрын
Ah! I now realise where my misunderstanding came from. Not only did Mr. Woo prove their parallelism, but also their equal magnitudes, proving its nature as a parallelogram. I'll listen better, next time!
@littletin84533 жыл бұрын
hi eddieeeeeeeeee ur very helpful
@hasooon70563 жыл бұрын
i wonder if people subscribe just to dislike the video, like, it's just 10 minutes and already a dislike
@nilsastrup89073 жыл бұрын
Yeah, there will always be some people trying to spread negativity. I feel like it might be a misclick though
@xx_1dreamstanlegend_xx4223 жыл бұрын
Either misclick or disliking to remove these videos from their feed
@Ddddddddddd3813 жыл бұрын
But how do you KNOWWWWRRR it’s a parallelogram?
@papafreddy21233 жыл бұрын
You can use this method to test the other two sides as well. Just use two different vectors that are also equal (i.e. a-c and b-d) and halve them both. You'll find that the halved vectors are also parallel and in fact correspond to the other two sides.
@navodalwickramawardhana90403 жыл бұрын
❤️❤️
@meiwinspoi50803 жыл бұрын
hi eddie. i am a maths teacher. i see your videos and adopt the identical methods to teach my students. is it plaigarism?? will you sue me for copyright violation?
@popculture1026 Жыл бұрын
what kind of stupid ass question is this
@sohamlonkar10263 жыл бұрын
Sir but how a+b=c+d ?
@carultch2 жыл бұрын
It's not a simple addition. It is an addition as vectors. a, b, c, and d are all vectors that enclose a quadrilateral, in that order. To get from the start of a to the end of b, it is the same net displacement as it is to follow the path along c, and then along d. That's how we have equal vector sums along a and b, as we do along c and d.