Visual Group Theory, Lecture 2.4: Cayley's theorem

  Рет қаралды 40,208

Professor Macauley

Professor Macauley

Күн бұрын

Пікірлер: 11
@qingzhenwu8370
@qingzhenwu8370 3 жыл бұрын
i think at 5:05, r²=(123)(465), rf=(16)(24)(35), r²f= (15)(26)(34). you should give this example before that homework in lecture 2.3
@sebastianmarshall5188
@sebastianmarshall5188 3 жыл бұрын
This might be late, but I believe this is false. Calculating first right to left, we get the same r^2, but my rf = (15)(26)(34) and r^2f = (16)(24)(35)
@khoavo5758
@khoavo5758 5 жыл бұрын
I'm afraid the statement of the theorem: "Every finite group is isomorphic to a collection of permutations" implies that _collections_ have structure, which they don't. The correct statement should be "Every finite group is isomorphic to _a group constructed by_ a collection of permutations _and function composition_".
@matthewmacauley5441
@matthewmacauley5441 5 жыл бұрын
It should be understood that the binary operation is function composition, as discussed in the previous lecture. Similarly, we can say things like "the group of integers", without saying "under addition" each time.
@khoavo5758
@khoavo5758 5 жыл бұрын
@@matthewmacauley5441 While I agree that the operation is implied, the slide said _collection_, not group. Not all collections of permutations with composition qualify as groups.
@fredidi4918
@fredidi4918 4 ай бұрын
Why not labeling node 1 the identity?
@scitwi9164
@scitwi9164 8 жыл бұрын
So in short, we can take any order `n` and map all the possible groups in it by putting `Sₙ` at the centre and "branching" every other group as derived from that `Sₙ`? I think it could be more clear to see by looking at the multiplication table itself: Since it's been said already that every element can appear only once in each column, and all elements must appear in each column, then it's quite obvious that a column is a permutation, because it's like shuffling a deck of playing cards. I'm also curious: is there any formula for the number of all possible groups of order `n`?
@mandrewness
@mandrewness 8 жыл бұрын
The number of groups of order n (up to isomorphism) is sequence A000001 in OEIS: oeis.org/A000001
@derciferreira7211
@derciferreira7211 7 жыл бұрын
Prof. Mccauly , what symetric group is the E8 group isometric to ?
@comfycozyarewe388
@comfycozyarewe388 5 жыл бұрын
☄️
@dnvraghavendrasaisurisetti7045
@dnvraghavendrasaisurisetti7045 5 жыл бұрын
sir,u were supposed to explain the proof of cayley's theorem not proving the statement using some examples from the textbook
Visual Group Theory, Lecture 3.1: Subgroups
13:43
Professor Macauley
Рет қаралды 22 М.
301.5I Cayley's Theorem for Finite Groups
10:43
Matthew Salomone
Рет қаралды 4,6 М.
BAYGUYSTAN | 1 СЕРИЯ | bayGUYS
36:55
bayGUYS
Рет қаралды 1,9 МЛН
Каха и дочка
00:28
К-Media
Рет қаралды 3,4 МЛН
REAL or FAKE? #beatbox #tiktok
01:03
BeatboxJCOP
Рет қаралды 18 МЛН
Abstract Algebra | Cayley's Theorem
13:26
Michael Penn
Рет қаралды 27 М.
Group theory 2: Cayley's theorem
27:48
Richard E Borcherds
Рет қаралды 43 М.
Visual Group Theory, Lecture 2.1: Cyclic and abelian groups
30:45
Professor Macauley
Рет қаралды 37 М.
Cayley's Theorem - Understanding the proof
5:27
Mike's Financial Edge
Рет қаралды 2,2 М.
Visual Group Theory, Lecture 4.1: Homomorphisms and isomorphisms
47:18
Professor Macauley
Рет қаралды 23 М.
Cyclic Groups  (Abstract Algebra)
5:01
Socratica
Рет қаралды 463 М.
Proof: Cosets Partition the Group | Abstract Algebra
6:31
Wrath of Math
Рет қаралды 7 М.
Group theory 1: Introduction
20:49
Richard E Borcherds
Рет қаралды 128 М.
BAYGUYSTAN | 1 СЕРИЯ | bayGUYS
36:55
bayGUYS
Рет қаралды 1,9 МЛН