I anticipate that suggestions of nondifferentiable functions will be quite popular. Perhaps exploring the properties of such a function, such as Weierstrass' function or Bolzano's function, and showing where the reasoning for differentiability breaks down in such cases might help increase the understanding of why continuity does not necessarily imply differentiability.
@SaurabhKumar-jo6dp3 жыл бұрын
Right my opinion was also same🤞
@volodymyrgandzhuk3613 жыл бұрын
When you say that Weierstrass's function has no derivative, that's an answer to the question "What is the derivative of Weierstrass's function?" On the other hand, it's impossible, or at least too hard, to compute the integrals of certain functions.
@PinusTF2Spy3 жыл бұрын
True. I want bprp to show why the subdifferential (generalized derivative) of the norm function doesn't exist at 0 and also differentiate a "quadratic" function, except a quadratic that doesn't look like x^2, but rather x^T*A*x.
@josefwakeling71033 жыл бұрын
*laughs in the weierstrass function*
@pardeepgarg26403 жыл бұрын
NO!!!!
@soumyojitpal33993 жыл бұрын
i am new to calculus, can you explain what is the weierstrass function ?
@jaxoncr3 жыл бұрын
@@soumyojitpal3399 a function that is continuous everywhere, but differentiable no where. If a function is differentiable, it implies it is also continuous. However, the converse is not true. A classic example is the function abs(x) about x = 0, the function is continuous but not differentiable at that specific point. This is similar to the weierstrass function except we cannot differentiate it at any point.
@Taigokumaru2 жыл бұрын
@@jaxoncr Omg. I had to Google it to confirm the graph. The Weierstrass function is basically the aura around the characters powering up in the Dragonball Z anime!
@karannair30353 жыл бұрын
You should do a legitimate series on derivatives of big expressions like this. Really cool to watch and solve along.
@bprpcalculusbasics3 жыл бұрын
I plan to!
@liamwelsh55652 жыл бұрын
6:45 I do this so much. I spend like a minute or two trying to figure out what's the best way to write the final answer even though it doesn't matter at all. lol
@zhiyuanliu95333 жыл бұрын
Can you please find the second derivative of that equation?
@dinosaric48622 жыл бұрын
You wish..
@coderanger77083 жыл бұрын
Differentiate Weierstrass function next. By differentiation just find the slope at each interval and show us.
@dafureveerbhadra27722 жыл бұрын
Not st each just find slope at any point on the xy plane
@adrishbora3 жыл бұрын
This series is going to be absolutely fun!!! Love your content man!!!
@YoavZilka3 жыл бұрын
You could differentiate the Lambert W function. It really suits your channel, and it’s quite nice using implicit differentiation.
@YoavZilka3 жыл бұрын
Just noticed you already did that!
@bprpcalculusbasics3 жыл бұрын
Yea. But I can make a remastered version or a harder one.
@YoavZilka3 жыл бұрын
@@bprpcalculusbasics sounds good
@YoavZilka3 жыл бұрын
@ニコラ-NR you can, but it’s kinda complicated. You need to take a u sub where u=W(x), and then find dx in terms of du by differentiating u (which is just W(x)). From there it’s pretty straight forward using integration by parts
@cH3rtzb3rg2 жыл бұрын
@ニコラ-NR You can integrate any continuous function. It may not be possible to express the integral with elementary functions, though.
@fanamatakecick973 жыл бұрын
The symmetry with this derivative is angelic, i’m not gonna lie. Math is so satisfying
@michaeledwardharris2 жыл бұрын
That was a pretty wild ride! Very interesting problem, and a neat solution.
@mathboy81882 жыл бұрын
One gotcha with implicit differentiation: you've got stop and ask if there's even a function there at all. For instance here, when x = 0, ANY y such that sin(y) > 0 is a solution, so you're either locally looking at a vertical line (so no derivative), and/or, as I'd guess, a lot of "branches" converging onto intervals of the y-axis. Even if the formula spits out a value for dy/dx at some point where x=0, you don't have "the derivative there", but rather only the beginning of an interpretation of what's going on with that relationship there. I checked graphically (wolfram alpha), and there's a unique x value corresponding to y = pi/6 (x ~ 0.2), so you likely have a clean local branch of a function near there, but in general, implicitly defined "functions" can be a real mess. (There's an advanced calculus theorem, The Inverse Function Theorem, which will give you some local guarantees, but of course that demands carefully checking its assumptions hold.) Easy Example of the kinds of situations to look out for: Use implicit differentiation on x^2 + y^2 = 0. You get 2x + 2y y' = 0, so y' = - x / y. Thus you get a formula for the derivative everywhere where y isn't 0. Problem is, y = 0 is the only y value for that relationship. The implicit function there is the most trivial one imaginable: { 0 } --> { 0 }, having domain and range both a single element. No function with a discrete domain is going to have any derivatives anywhere... the concept doesn't even make sense. So even though you get a nice simple relationship, x^2 + y^2 = 0, and a nice clean formula, y' = - x / y, that derivative formula means absolutely nothing. Here's an even more dramatic example: x^2 + y^2 = -1. Again, if you do implicit differentiation, you'll get y' = - x / y... but there's no points satisfying that example, so certainly no local branch function there, so certainly no derivative.
@conanedojawa45383 жыл бұрын
I ask you to solve the resulting exact differential equation from this implicit differentiation
@kepler41923 жыл бұрын
You can also memorize the formula for differentiating g(x)^h(x): f prime= (g(x)^h(x))[(h*dg/dx)/g + dh/dx*ln(g)] God it’s so hard writing math in comments
@JansthcirlU3 жыл бұрын
Could've used apostrophes for less clutter: (g^h)' = (g^h) * [h * g' / g + h' * ln(g)]
@kepler41923 жыл бұрын
@@JansthcirlU ah, thx
@YossiSirote3 жыл бұрын
I think it is easier to use the y’ notation rather than dy/dx in this situation.
@SeeTv.3 жыл бұрын
Math majors are triggered. Not all functions are differentiable everywhere :D
@cH3rtzb3rg2 жыл бұрын
This totally triggered me as well! In fact, barely any functions are even continuous everywhere. And every function which is differentiable is also integrateble (because every continuous function is).
@cobovega273 жыл бұрын
Is the factorial function differentiable? How would one tackle that problem? Do we use the gamma or pi function?
@soupisfornoobs40813 жыл бұрын
It's not differentiable in the standard way because it is a discreet function, but you can use the gamma function and the result is pretty cool
@cobovega273 жыл бұрын
Sounds fun
@Firefly2563 жыл бұрын
Why does bprp say chain rule as chandu?
@nalingoel69713 жыл бұрын
Try differentiating x^(tan(y)) = y^(tan(x))
@acuriousmind62173 жыл бұрын
5:21 this and this and this and that sounds understandable
@nekothecat3 жыл бұрын
Can you try differentiate x^y^x^y ?
@bprpcalculusbasics3 жыл бұрын
We need an equation. So what would you like to be =?
@nirmankhan21343 жыл бұрын
@@bprpcalculusbasics equal to sinx for example
@BiscuitZombies3 жыл бұрын
@@bprpcalculusbasics set it equal to an arbitrary constant ="🙂"
@ДенисКосько-н9и3 жыл бұрын
@@bprpcalculusbasics "the fish"
@quadruplay97882 жыл бұрын
could you do some episodes on split-complex and dual numbers?
@AriosJentu3 жыл бұрын
How about differentiate matrix function? Or differentiate vector function wrt verctor?
@teelo120003 жыл бұрын
That sounds like a challenge. Differentiate: d/dx(my completely made up function where I'm not going to tell how you it works of (x))
@m3nny1259 ай бұрын
Case one: D/DX of D/DX = D^2/DX^2 Case two: Cancel d and d out D/DX of X = 1
@genius56253 жыл бұрын
Me as calc3 student : why i am doing this ? 😂😅😂
@Ou_dembele2 жыл бұрын
Do some radical function derivatives
@deep245435422 жыл бұрын
d/dx sin(x)^cos(x)^tan(x)
@Bilbobaggiins.03 жыл бұрын
I am come on this channel not immediately but definately
@raifegeozay6873 жыл бұрын
find the second devirate next: y=((x^x^x+tan(tan(tan(x!))) -cos(sin(x))+arctan(arctan(x)))!)^((x^x^x+tan(tan(tan(x!))) -cos(sin(x))+arctan(arctan(x)))!) (yes there are some factorials) (use gamma function to differentiate factorial)
@yk4r5993 жыл бұрын
Wow
@shadowgamerA3 жыл бұрын
Felt amazing on solving it within 3 minutes....🙂😃
@henkhu1002 ай бұрын
The principle is only allowed if the relation defines y as a differentiable function of x, so there are certain conditions for a relation before we can perform implicit differentiation. For instance (in real number system): sqrt(-(x-3)^2) + y^(lnx) + y=2 is a relation that has a meaning for only x=3 So if we see y as a function of x the domain is just {3} and there is no derivative of y. And that means that the dy/dx you find using the method in the video does not have any meaning. What I miss in the video is: does the relation fit the conditions for implicit differentiation? So what about the title of the video? Anything? How do you differentiate the function y=sqrt(-(x-3)^2).
@pierrotinturquoise3 жыл бұрын
What about a video about Weierstrass Function next? :> I couldn't find a single good video on this topic in youtube. Please make one on this. :"(
@Ashirene223 жыл бұрын
u gonna do calc 3 content?
@samwitkowski34593 жыл бұрын
now do the second derivative.
@SlemTurnThePowerOn2 жыл бұрын
Second derivative of this one?
@dinosaric48622 жыл бұрын
The graph of that function is just a bunch of squared with rounded corners haha
@NC28-EnАй бұрын
Yay new series :)
@jamessprenkle63553 жыл бұрын
More !!!
@gamingmusicandjokesandabit12403 жыл бұрын
Haters will say that means you can't differentiate what you can differentiate vs what you can't differentiate.
@sriprasadjoshi30362 жыл бұрын
Him: Chain Rule Subtitle: Chandu
@zhiyuanliu95333 жыл бұрын
Differentiate x!*(x^2)
@holyshit9223 жыл бұрын
We can differentiate anything! what about functions like Weierstrass
@AndDiracisHisProphet3 жыл бұрын
Dirichlet Function
@yoav6133 жыл бұрын
Next time i suggest you to find the derivative of (tanx)^(e^x)
@rafaelgcpp3 жыл бұрын
Differentiate I_Q(x) R->R, where I_Q(x) is 1 if x is rational and 0 otherwise...
@ДенисКосько-н9и3 жыл бұрын
Johann Peter Gustav Lejeune Dirichlet likes your comment
@mathboy81882 жыл бұрын
Differentiate f(x) = x^2 if x is rational, and 0 if x is irrational. Differentiate f(x) = 1 + sin(x) if x is rational, and 0 if x is irrational.
@plutothetutor16603 жыл бұрын
differentiate the infinite tetration of x
@henningnagel19773 жыл бұрын
Entered the original function into Wolfram Alpha. Well...
@bprpcalculusbasics3 жыл бұрын
😆
@SaurabhKumar-jo6dp3 жыл бұрын
🤭
@GreenMeansGOF3 жыл бұрын
Differentiate the gamma function
@yoav6133 жыл бұрын
This is in class,in the test - find y'' 🤣
@adamforte95302 жыл бұрын
That was great
@twelfthdoc3 жыл бұрын
So this is where we paramaterize x and y in terms of t and figure out what dy/dx is terms of t?... Maybe another day...
@ДенисКосько-н9и3 жыл бұрын
and yes, i do like it!
@ДенисКосько-н9и3 жыл бұрын
weierstrass function? ok. and dirichlet function next
@yk4r5993 жыл бұрын
Nice, now find y 🤣🤣
@frentz72 жыл бұрын
You're a very cool guy. :)
@joakimharbak74852 жыл бұрын
Try x! maybe?
@AnakinSkywalker-zq6lm3 жыл бұрын
It would have taken me forever and idk why… but he did it in under ten min so it must be true that studying solutions makes you good at math…
@dinosaric48622 жыл бұрын
Now integrate the result
@MohitKumar-eu4pz3 жыл бұрын
I. Solved this very quickly
@sharele983 жыл бұрын
solve for y
@agabe_89893 жыл бұрын
now take the second derivative >:)
@distinctperception27763 жыл бұрын
Differentiate x! :)
@sanjayavamachaari6233 жыл бұрын
differentiate y=icosxsiny/(2sinxtanx+1),w.r.t. x
@mathevengers11313 жыл бұрын
Do half derivative of it.
@SaurabhKumar-jo6dp3 жыл бұрын
🤞 yeah
@hoen35612 жыл бұрын
differentiate x^y^x^y..... = πy
@quadruplay97882 жыл бұрын
now solve for y
@IoT_3 жыл бұрын
No, check by integration. 😅
@shaftous3 жыл бұрын
bring back the longer hair!!
@novidsonmychanneljustcomme57533 жыл бұрын
...and now solve the differential equation you just created. 🤓😁
@Theo-ki3lu3 жыл бұрын
thanks for saying “he or she” instead of the “they” bullshit