finding the derivative from an integral equation

  Рет қаралды 20,876

bprp calculus basics

bprp calculus basics

Күн бұрын

Пікірлер
@txikitofandango
@txikitofandango 2 жыл бұрын
f(x³+1) = 1/(3x³-1) = 1/(3(x³+1) - 4) Substitute x for x³+1 f(x) = 1/(3x - 4) No need to deal with funky inverses or "cube roots"
@bprpcalculusbasics
@bprpcalculusbasics 2 жыл бұрын
Ooooh yea!!! How did I NOT see that 😆
@aklisilva9785
@aklisilva9785 2 жыл бұрын
But the integral diverge at 1.
@fivestar5855
@fivestar5855 2 жыл бұрын
Nice!
@rithvikmuthyalapati9754
@rithvikmuthyalapati9754 2 жыл бұрын
@@aklisilva9785 There is no integral in that comment. Only a function
@mathsx5887
@mathsx5887 2 жыл бұрын
You can do that because the cube route is a bijective function from R to R, so ur doing the same
@MattT002
@MattT002 2 жыл бұрын
Nothing says ‘Happy Valentine’s Day!’ like some calculus.
@bobingstern4448
@bobingstern4448 2 жыл бұрын
Agreed!
@liquid_lover
@liquid_lover 2 жыл бұрын
Nothing else is more relevant, obviously.
@michaelempeigne3519
@michaelempeigne3519 2 жыл бұрын
faster way to get the function from f ( x^3 + 1 ) = 1 / ( 3x^3 - 1 ) is to make x^3 + 1 to appear everywhere : f ( x^3 + 1 ) = 1 / [ 3 ( x^3 + 1 ) - 3 - 1 ] f ( x^3 + 1 ) = 1 / [ 3 (x^3 + 1 ) - 4 ] now change the x^3 + 1 to x's : f ( x ) = 1 / ( 3x - 4 )
@nasekiller
@nasekiller 2 жыл бұрын
i got an answer for the question at the end via substitution. however the result is weird. one the one hand it depends on f(1) (which is possible), but when i put it back into the original equation, the integrand was 1/(x-1). and obviously that will give us problems when integrating with a lower bound of 1. so maybe the problem is ill-posed and there is no solution?
@seungukj
@seungukj 2 жыл бұрын
Same issue for the original problem too. Subbing back f(x)=1/(3x-4) to the original integral also gives a divergent integral 😂
@yoav613
@yoav613 2 жыл бұрын
Yes.that explains bprp evil smile at the end🤣
@lucas0m0james
@lucas0m0james 2 жыл бұрын
Yup, some functional analysis on any antiderivative of the integrand shows it'll always be divergent approaching 1
@adrishbora
@adrishbora 2 жыл бұрын
Your videos always make my day man! Love just calculus!!!
@bprpcalculusbasics
@bprpcalculusbasics 2 жыл бұрын
Thanks!!!
@yegorgorodzha9921
@yegorgorodzha9921 2 жыл бұрын
It's nice but if we plug the function into the integral we get a problem at 1. If we try to evaluate it, we do get the lnx, but we also get +∞. Not sure how that is supposed to work, probably the lower bound of integration should have been different.
@AtotheKres
@AtotheKres 2 жыл бұрын
Ran into the same issue, tried to fix it with some additional function of the lower bound but could not get it yet. Shouldn't there be some additional degree of freedom in f due to loosing Information by differntiating? You could also write the rhs as an integral and take the Limit lowerbound=1+epsilon. 8 guess the divergencies would cancel out there.
@jachymsetka
@jachymsetka 2 жыл бұрын
what I love about these videos is that I don't understand any of it but still enjoy it
@retueze3098
@retueze3098 2 жыл бұрын
1:02 why did we lose the bottom bound of the integral? shouldn't we subtract from the left part f(1)/(1+f(1))?
@anshumanagrawal346
@anshumanagrawal346 2 жыл бұрын
The second question is easier than the first, you don't even need to differentiate under the Integral sign, as the integral is easily solvable by making the substitution u= 1+f(t) 😁
@mr.atomictitan9938
@mr.atomictitan9938 2 жыл бұрын
did you end up getting 1/(3(x-1)^2/3?
@priyanshugoel3030
@priyanshugoel3030 2 жыл бұрын
1+f(x^3 +1)={1+f(1)}x Maybe f(x) can be recontructed via a power series method or iterative method At x=2.
@AriosJentu
@AriosJentu 2 жыл бұрын
Hmm. I solve this equation with substitution g(t) = f(t)/(1+f(t)), and try to solve for general solution of integral equation. I found that g(t) = 1/(3t - 3), [implies that f(t) = 1/(3t-4)] and after substituting it back, I've got an improper integral, which isn't got me ln(x) function as result, also there is an a constant ln(0)/3, which is in limit goes to -infty. Its need to be proven that this problem hasn't any correct solution, and I think this is easy to do. Maybe if integral boundary starts from 2, the result will be correct, but for this boundary there is no correct solution, I think. And if there is no solution of integral equation, there is also no solution for the derivative of function under integral sign.
@dashingrapscallion
@dashingrapscallion 2 жыл бұрын
I think the limits need to be changed for this to be correct. I got the same solution; however, upon plugging the solution in to check my answer, I found that you end up with a divergent integral, particularly with the lower limit of 1.
@bprpcalculusbasics
@bprpcalculusbasics 2 жыл бұрын
I think so too especially reading your comment and others’
@dashingrapscallion
@dashingrapscallion 2 жыл бұрын
@@bprpcalculusbasics still a really cool problem! Thank you for sharing!
@bprpcalculusbasics
@bprpcalculusbasics 2 жыл бұрын
@@dashingrapscallion thanks!
@wojciechchudek9379
@wojciechchudek9379 2 жыл бұрын
f'(x)=1/3(x-1)^(-2/3) for x ∈(1; +∞) and f'(x)=-1/3(x-1)^(-2/3) for x ∈(0;1) , Easier is just calculate this integral with u=1+f(t) than differentiate
@ScienceWorldz
@ScienceWorldz Жыл бұрын
The answer to the question at the last is f(x) = c * exp(cuberoot(x - 1)) - 1 So, f'(x) = c * exp(cuberoot(x - 1)) / 3 * cuberoot((x - 1)^2), and since c is a constant, we can write it as f'(x) = c * exp(cuberoot(x - 1)) / cuberoot((x - 1)^2)
@cooldude123456789098
@cooldude123456789098 2 жыл бұрын
I think I got the answer here. Using the same methods from the first part of the video, we end up at the equation: 3x^3 * f'(x^3 + 1) = 1 + f(x^3 + 1) -> (3x-3) * f'(x) = 1 + f(x) -> (3x-3) df = (1+f)dx -> df / (1+f) = dx / (3x-3) -> ln(1+f) = (1/3) * ln(x-1) = ln[(x-1)^(1/3)] -> f(x) = (x - 1)^(1/3) -1 -> f'(x) = (1/3) * (x-1)^(-2/3)
@elkuston7671
@elkuston7671 2 жыл бұрын
Great video as always! What's the answer to the last question? I'm getting f'(x)=1/(3*(x-1)^⅔), first by integrating, then removing the f(1) by derivating, and finally solving for f'
@adityaekbote8498
@adityaekbote8498 2 жыл бұрын
Don't we loose solutions by differentiating on both sides?
@Keithfert490
@Keithfert490 2 жыл бұрын
The bottom limit must be 2 because, when x=1, the integral must be zero because ln(1)=0
@naveensoh2884
@naveensoh2884 2 жыл бұрын
Answer for the last one I think f(x)=-1 f'(x)=0 Is it correct
@talkgb
@talkgb 2 жыл бұрын
Right before the inverse step you also could have just done f(x^3 + 1) = 1/[3(x^3 + 1) - 4] so f(x) = 1/(3x - 4) right?
@juancamiloayacastano9232
@juancamiloayacastano9232 2 жыл бұрын
Is not possible to get ln(x) with that boundary conditions. It diverges for bound 1
@vaithiesh.jjayasankar7910
@vaithiesh.jjayasankar7910 2 жыл бұрын
A really good video !!
@benardolivier6624
@benardolivier6624 2 жыл бұрын
Integrating the LHS is easy, we get ln((1+f(x^3+1))/(1+f(1)) = ln(x), which is now problematic since if we suppose f is defined at x=1 we get LHS=0 and RHS tends to infinity at x=0 which contradicts that supposition so f is not defined at 1.
@darranjurdyga1999
@darranjurdyga1999 2 жыл бұрын
idk how but I got f'(x)=0 for the last question. So I integrated the left hand side by u=1+f(t) which gives du/f'(t)=dx Then I got to integrate 1/u which gives ln(u)=ln(1+f(t)) Substitute the bounds I get ln(1+f(x**3 +1))-ln(1+f(1))=ln(x) So using the natural logarithm law I got ln( (1+f(x**3 +1) ) / (1+f(1)) =ln(x) Take both natural logs off Make x=sqrt3(x-1) and shuffle some functions to get f(x)=(1+f(1) ) (sqrt3(x-1)) -1 Make x=1 to find what f(1) is f(1)=(1+f(1) )(0)-1 f(1)=-1 Which means f(x)=(1-1)(sqrt3(x-1))-1 Being f(x)=-1 , then d/dx both sides to got f'(x)=0
@lukaspeter718
@lukaspeter718 2 жыл бұрын
could be because ln(1+f(1))=infinity
@barobabu8889
@barobabu8889 2 жыл бұрын
Well I'm getting f'(x) = (C/3)(x-1)^(-2/3) , where C is any arbitrary constant. The C won't affect the parent integral though which gives ln(x). 😀😀
@dqrksun
@dqrksun 2 жыл бұрын
曹老師新年快樂🥳
@bprpcalculusbasics
@bprpcalculusbasics 2 жыл бұрын
Thanks, you too! Btw where are you located? It is Monday 8:20 am for me.
@dqrksun
@dqrksun 2 жыл бұрын
@@bprpcalculusbasics 剛到了元旦
@dqrksun
@dqrksun 2 жыл бұрын
@@bprpcalculusbasics 最後那個問題有點東西
@itdepends5304
@itdepends5304 2 жыл бұрын
Your videos' thumbnails are cool How to make such ?
@mr.inhuman7932
@mr.inhuman7932 2 жыл бұрын
Honest question: Is he saying "Chandu" instead of "Chain Rule" or is it just his accent? Or "Chandu" something I just dont know of yet? Btw I love your videos! I watch alls 3 of your channels!
@anshumanagrawal346
@anshumanagrawal346 2 жыл бұрын
It's a joke, Dr Peyam started it and he continued it, he used to say "Chain-Rule" earlier but now he says "Chen-Lu"
@kepler4192
@kepler4192 2 жыл бұрын
3:48 what do you mean “x to the third power” don’t you mean “three times x”
@dianeweiss4562
@dianeweiss4562 2 жыл бұрын
Slip of the tongue
@bprpcalculusbasics
@bprpcalculusbasics 2 жыл бұрын
Yea
@Jha-s-kitchen
@Jha-s-kitchen 2 жыл бұрын
For the last question, i am getting f ' (x) = (1 + f(x)) / (3x - 3) How to solve further (If it is needed)
@anshumanagrawal346
@anshumanagrawal346 2 жыл бұрын
This is a seperable differential equation
@rolfjohansen5376
@rolfjohansen5376 2 жыл бұрын
what if the integral starts at 2 instead of 1 ?
@chrisrybak4961
@chrisrybak4961 2 жыл бұрын
Nice video, as always, but I don’t understand why you can just ignore the lower (1) bound of the integral?
@juancamiloayacastano9232
@juancamiloayacastano9232 2 жыл бұрын
Fundamental theorem of calculus. When you differenciate the integral you must evalue the integrand with the bounds and multipliy it by de derivative of the bound. (1)'=0 You can just ignore it for any constant
@chrisrybak4961
@chrisrybak4961 2 жыл бұрын
@@juancamiloayacastano9232 ahhh, ok. Thank you! 🙏
@anshumanagrawal346
@anshumanagrawal346 2 жыл бұрын
The question, as it's stated is wrong and has no solution, you can check that the function he's obtained doesn't satisfy the original equation As for your question, note that the integral from 0 to x and 1 to x (just as an example) only differ by a constant, so their derivatives are the same, in general the derivative of a function of type integral from a to x (where 'a' is a constant, a given fixed real number like 1 or 0 or 1/2, NOT a function of x) is just the integrand, this is just the first fundamental theorem of Calculus, for the general case, the type of Integral from g(x) to h(x), you have something called the Newton-Leibniz Integral rule, which can be proven easily by using the second fundamental theorem of Calculus and the chain rule, and if the lower bound or upper bound is a constant, it doesn't make a difference as in the rule you multiply by the derivative of g(x) and h(x) and the derivative of a constant is 0
@skylardeslypere9909
@skylardeslypere9909 2 жыл бұрын
Somehow I got that in the last problem, f(x) was identically equal to 1. Which isn't really possible of course, because then you'd get 0 = ln(x) which is not true. It's 1AM tho so I probably made a mistake somewhere. My solution involved a linear dirst order differential equation.
@rshawty
@rshawty 2 жыл бұрын
I don’t know if the answer is f’(x)=0 or if there’s no answer because I find f(x)=-1 but you can clearly see that in the original assumption f(x)≠-1, so I think I should answer “Impossible”, no ?
@rshawty
@rshawty 2 жыл бұрын
It’s of course about the last question
@adityasuhane8930
@adityasuhane8930 2 жыл бұрын
I got 3
@rshawty
@rshawty 2 жыл бұрын
@@adityasuhane8930 wtf, how ?
@adityasuhane8930
@adityasuhane8930 2 жыл бұрын
@@rshawty inside integral on the denominator we have 1+f(t) and on numerator we have f'(t)dt which is simply the differentiation of the denominator. We can substitute 1+f(t) =z Now we have, dz/z inside integral. Differentiate both sides as in previous problem, replace z by 1+f(t), put x^3+1 in place of t. Now you have 3x^2/1+f(x3+1) = 1/x Solve this like in previous problem and you have f(x) = 3x-4 So f'(x)=3
@rshawty
@rshawty 2 жыл бұрын
@@adityasuhane8930 And did you check your answer ?
@dihydrogenmonoxid1337
@dihydrogenmonoxid1337 2 жыл бұрын
I study Physics, the last thing that would happen to me is someone dating me LMAO Math is better anyway
@bringbackthedislikecount6767
@bringbackthedislikecount6767 2 жыл бұрын
Instead of valentine, wish you a happy new year. 恭喜发财
@bprpcalculusbasics
@bprpcalculusbasics 2 жыл бұрын
Thank you. And yes “bring back the dislike count!!!
@nidhiagrawal3354
@nidhiagrawal3354 2 жыл бұрын
I don't get what valentine about blackpenredpen's question.
@jakesboty9936
@jakesboty9936 2 жыл бұрын
The answer of last question is f'(x)=1/3 *(x-1)^-2/3
@Bilbobaggiins.0
@Bilbobaggiins.0 2 жыл бұрын
Again I learn something new
@Bilbobaggiins.0
@Bilbobaggiins.0 2 жыл бұрын
Thanks sir for this
@lhduy_vn
@lhduy_vn 2 жыл бұрын
How can u find the inverse of a function like that 😇
@juniorisrrael3184
@juniorisrrael3184 2 жыл бұрын
Can you solve d/dx (f(g(x)))= - g(x)?
@nidhiagrawal3354
@nidhiagrawal3354 2 жыл бұрын
f(x) = -x Thanks 😊 I don't get what is valintine about blackpenredpen's question.
@juniorisrrael3184
@juniorisrrael3184 2 жыл бұрын
is a composite function must find f and g
@nidhiagrawal3354
@nidhiagrawal3354 2 жыл бұрын
@@juniorisrrael3184 f(x) = -x + c, g(x) is not restricted. ...but what is valentine about blackpenredpen's question?
@dethmaiden1991
@dethmaiden1991 2 жыл бұрын
Based on the title I was sure the answer would be something like sqrt(-1)
@zgamer_5632
@zgamer_5632 2 жыл бұрын
when I saw that you made it for Valentine's i thought the solution was gonna be a Heart-shaped curve
@yoav613
@yoav613 2 жыл бұрын
Are we going to do this again or something different..well i don't know (and then evil smile hahahahaha 🤣🤣)
@JayOnDaCob
@JayOnDaCob 2 жыл бұрын
I can’t :(. I have no idea how to do calculus I just watch these cause I think they’re interesting
@yashprajapati8857
@yashprajapati8857 2 жыл бұрын
I love you!
@tonyhaddad1394
@tonyhaddad1394 2 жыл бұрын
last challenge : Integral (from 1 to x^3 +1) [ f ' (t) /( f(t) + 1 ) ] dt = ln(x) ln ( f(t) + 1 )( evaluted fom 1 to X^3 + 1 ) = ln(x) ln( f(x^3 +1 ) + 1) - ln(f(1) + 1) = ln(x) Ln( (f(x^3 +1 )+1)/(f(1)+1) ) = ln(x) (f(x^3+1) + 1) / (f(1) + 1 ) = x f(x^3 + 1) = (f(1) +1)* x - 1 let x ----> cuberoot(x - 1) f(x) = (f(1) + 1)*cuberoot(x - 1) - 1 Let x = 1 f(1) = - 1 ( if its continous ......) f(x) = - 1 f ' (x) = 0 Im not sure if im correct !!!!
@ThePowerOfRed21
@ThePowerOfRed21 2 жыл бұрын
if f(1) = -1 then ln(f(1)+1) can't exist
@dqrksun
@dqrksun 2 жыл бұрын
I got this too. But I realized f(1) can't exist or else you'll have a ln0
@bernizubi5217
@bernizubi5217 2 жыл бұрын
Chen Lu!
@sagarmajumder7806
@sagarmajumder7806 2 жыл бұрын
There should be log(1+x).. As,at x =0 LHS and RHS doesn't satisfactied.
@rogerkearns8094
@rogerkearns8094 2 жыл бұрын
Let me know if you need any help with all the St Valentine's day romance that you've just unleashed upon yourself. ;)
@adityasuhane8930
@adityasuhane8930 2 жыл бұрын
The last question answer.... I got 3
@plislegalineu3005
@plislegalineu3005 2 жыл бұрын
Idk the Q at the end is screaming "U-SUB!" to me, but idk if that would work and how that would work
@hypnovia
@hypnovia 2 жыл бұрын
You have the right idea!!! 🌟 What’s the derivative of the bottom?
@plislegalineu3005
@plislegalineu3005 2 жыл бұрын
@@hypnovia I know what u should be I'm just too lazy to do things that come after this lol
@dqrksun
@dqrksun 2 жыл бұрын
@@hypnovia f'(x)
@aklisilva9785
@aklisilva9785 2 жыл бұрын
I think the integral is from 2 not from 1.
@Сладкоежка-ж5я
@Сладкоежка-ж5я 2 жыл бұрын
Genius
@pedroribeiro1536
@pedroribeiro1536 2 жыл бұрын
Ironic... A math video mentioning valentine's day... Mathematicians don't have girl/boyfriends
@alakkis
@alakkis 2 жыл бұрын
do 10th graders take this stuff? if so, i'm interested
@fivestar5855
@fivestar5855 2 жыл бұрын
There's 666 likes on this video lol
@chmjnationalsuperarmygener8564
@chmjnationalsuperarmygener8564 2 жыл бұрын
?
@anshumanagrawal346
@anshumanagrawal346 2 жыл бұрын
Sadly, your equation is inconsistent :(
How to integrate 1/(1+tan(x))
4:17
bprp calculus basics
Рет қаралды 27 М.
we can differentiate anything!
8:34
bprp calculus basics
Рет қаралды 20 М.
IL'HAN - Qalqam | Official Music Video
03:17
Ilhan Ihsanov
Рет қаралды 700 М.
Мен атып көрмегенмін ! | Qalam | 5 серия
25:41
so you want a VERY HARD math question?!
13:51
blackpenredpen
Рет қаралды 1 МЛН
What Lies Between a Function and Its Derivative? | Fractional Calculus
25:27
how Laplace solved the Gaussian integral
15:01
blackpenredpen
Рет қаралды 763 М.
tangent line & area problem from Oxford
8:04
bprp calculus basics
Рет қаралды 38 М.
my answer is wrong
7:12
bprp calculus basics
Рет қаралды 10 М.
Convert a Riemann sum limit to an integral
8:19
bprp calculus basics
Рет қаралды 7 М.
integral of sin(x)/x from 0 to inf by Feynman's Technique
22:44
blackpenredpen
Рет қаралды 1,2 МЛН
What is Integration? 3 Ways to Interpret Integrals
10:55
Math The World
Рет қаралды 414 М.
The essence of calculus
17:05
3Blue1Brown
Рет қаралды 10 МЛН
Use calculus, NOT calculators!
9:07
bprp calculus basics
Рет қаралды 447 М.