f(x³+1) = 1/(3x³-1) = 1/(3(x³+1) - 4) Substitute x for x³+1 f(x) = 1/(3x - 4) No need to deal with funky inverses or "cube roots"
@bprpcalculusbasics2 жыл бұрын
Ooooh yea!!! How did I NOT see that 😆
@aklisilva97852 жыл бұрын
But the integral diverge at 1.
@fivestar58552 жыл бұрын
Nice!
@rithvikmuthyalapati97542 жыл бұрын
@@aklisilva9785 There is no integral in that comment. Only a function
@mathsx58872 жыл бұрын
You can do that because the cube route is a bijective function from R to R, so ur doing the same
@MattT0022 жыл бұрын
Nothing says ‘Happy Valentine’s Day!’ like some calculus.
@bobingstern44482 жыл бұрын
Agreed!
@liquid_lover2 жыл бұрын
Nothing else is more relevant, obviously.
@michaelempeigne35192 жыл бұрын
faster way to get the function from f ( x^3 + 1 ) = 1 / ( 3x^3 - 1 ) is to make x^3 + 1 to appear everywhere : f ( x^3 + 1 ) = 1 / [ 3 ( x^3 + 1 ) - 3 - 1 ] f ( x^3 + 1 ) = 1 / [ 3 (x^3 + 1 ) - 4 ] now change the x^3 + 1 to x's : f ( x ) = 1 / ( 3x - 4 )
@nasekiller2 жыл бұрын
i got an answer for the question at the end via substitution. however the result is weird. one the one hand it depends on f(1) (which is possible), but when i put it back into the original equation, the integrand was 1/(x-1). and obviously that will give us problems when integrating with a lower bound of 1. so maybe the problem is ill-posed and there is no solution?
@seungukj2 жыл бұрын
Same issue for the original problem too. Subbing back f(x)=1/(3x-4) to the original integral also gives a divergent integral 😂
@yoav6132 жыл бұрын
Yes.that explains bprp evil smile at the end🤣
@lucas0m0james2 жыл бұрын
Yup, some functional analysis on any antiderivative of the integrand shows it'll always be divergent approaching 1
@adrishbora2 жыл бұрын
Your videos always make my day man! Love just calculus!!!
@bprpcalculusbasics2 жыл бұрын
Thanks!!!
@yegorgorodzha99212 жыл бұрын
It's nice but if we plug the function into the integral we get a problem at 1. If we try to evaluate it, we do get the lnx, but we also get +∞. Not sure how that is supposed to work, probably the lower bound of integration should have been different.
@AtotheKres2 жыл бұрын
Ran into the same issue, tried to fix it with some additional function of the lower bound but could not get it yet. Shouldn't there be some additional degree of freedom in f due to loosing Information by differntiating? You could also write the rhs as an integral and take the Limit lowerbound=1+epsilon. 8 guess the divergencies would cancel out there.
@jachymsetka2 жыл бұрын
what I love about these videos is that I don't understand any of it but still enjoy it
@retueze30982 жыл бұрын
1:02 why did we lose the bottom bound of the integral? shouldn't we subtract from the left part f(1)/(1+f(1))?
@anshumanagrawal3462 жыл бұрын
The second question is easier than the first, you don't even need to differentiate under the Integral sign, as the integral is easily solvable by making the substitution u= 1+f(t) 😁
@mr.atomictitan99382 жыл бұрын
did you end up getting 1/(3(x-1)^2/3?
@priyanshugoel30302 жыл бұрын
1+f(x^3 +1)={1+f(1)}x Maybe f(x) can be recontructed via a power series method or iterative method At x=2.
@AriosJentu2 жыл бұрын
Hmm. I solve this equation with substitution g(t) = f(t)/(1+f(t)), and try to solve for general solution of integral equation. I found that g(t) = 1/(3t - 3), [implies that f(t) = 1/(3t-4)] and after substituting it back, I've got an improper integral, which isn't got me ln(x) function as result, also there is an a constant ln(0)/3, which is in limit goes to -infty. Its need to be proven that this problem hasn't any correct solution, and I think this is easy to do. Maybe if integral boundary starts from 2, the result will be correct, but for this boundary there is no correct solution, I think. And if there is no solution of integral equation, there is also no solution for the derivative of function under integral sign.
@dashingrapscallion2 жыл бұрын
I think the limits need to be changed for this to be correct. I got the same solution; however, upon plugging the solution in to check my answer, I found that you end up with a divergent integral, particularly with the lower limit of 1.
@bprpcalculusbasics2 жыл бұрын
I think so too especially reading your comment and others’
@dashingrapscallion2 жыл бұрын
@@bprpcalculusbasics still a really cool problem! Thank you for sharing!
@bprpcalculusbasics2 жыл бұрын
@@dashingrapscallion thanks!
@wojciechchudek93792 жыл бұрын
f'(x)=1/3(x-1)^(-2/3) for x ∈(1; +∞) and f'(x)=-1/3(x-1)^(-2/3) for x ∈(0;1) , Easier is just calculate this integral with u=1+f(t) than differentiate
@ScienceWorldz Жыл бұрын
The answer to the question at the last is f(x) = c * exp(cuberoot(x - 1)) - 1 So, f'(x) = c * exp(cuberoot(x - 1)) / 3 * cuberoot((x - 1)^2), and since c is a constant, we can write it as f'(x) = c * exp(cuberoot(x - 1)) / cuberoot((x - 1)^2)
@cooldude1234567890982 жыл бұрын
I think I got the answer here. Using the same methods from the first part of the video, we end up at the equation: 3x^3 * f'(x^3 + 1) = 1 + f(x^3 + 1) -> (3x-3) * f'(x) = 1 + f(x) -> (3x-3) df = (1+f)dx -> df / (1+f) = dx / (3x-3) -> ln(1+f) = (1/3) * ln(x-1) = ln[(x-1)^(1/3)] -> f(x) = (x - 1)^(1/3) -1 -> f'(x) = (1/3) * (x-1)^(-2/3)
@elkuston76712 жыл бұрын
Great video as always! What's the answer to the last question? I'm getting f'(x)=1/(3*(x-1)^⅔), first by integrating, then removing the f(1) by derivating, and finally solving for f'
@adityaekbote84982 жыл бұрын
Don't we loose solutions by differentiating on both sides?
@Keithfert4902 жыл бұрын
The bottom limit must be 2 because, when x=1, the integral must be zero because ln(1)=0
@naveensoh28842 жыл бұрын
Answer for the last one I think f(x)=-1 f'(x)=0 Is it correct
@talkgb2 жыл бұрын
Right before the inverse step you also could have just done f(x^3 + 1) = 1/[3(x^3 + 1) - 4] so f(x) = 1/(3x - 4) right?
@juancamiloayacastano92322 жыл бұрын
Is not possible to get ln(x) with that boundary conditions. It diverges for bound 1
@vaithiesh.jjayasankar79102 жыл бұрын
A really good video !!
@benardolivier66242 жыл бұрын
Integrating the LHS is easy, we get ln((1+f(x^3+1))/(1+f(1)) = ln(x), which is now problematic since if we suppose f is defined at x=1 we get LHS=0 and RHS tends to infinity at x=0 which contradicts that supposition so f is not defined at 1.
@darranjurdyga19992 жыл бұрын
idk how but I got f'(x)=0 for the last question. So I integrated the left hand side by u=1+f(t) which gives du/f'(t)=dx Then I got to integrate 1/u which gives ln(u)=ln(1+f(t)) Substitute the bounds I get ln(1+f(x**3 +1))-ln(1+f(1))=ln(x) So using the natural logarithm law I got ln( (1+f(x**3 +1) ) / (1+f(1)) =ln(x) Take both natural logs off Make x=sqrt3(x-1) and shuffle some functions to get f(x)=(1+f(1) ) (sqrt3(x-1)) -1 Make x=1 to find what f(1) is f(1)=(1+f(1) )(0)-1 f(1)=-1 Which means f(x)=(1-1)(sqrt3(x-1))-1 Being f(x)=-1 , then d/dx both sides to got f'(x)=0
@lukaspeter7182 жыл бұрын
could be because ln(1+f(1))=infinity
@barobabu88892 жыл бұрын
Well I'm getting f'(x) = (C/3)(x-1)^(-2/3) , where C is any arbitrary constant. The C won't affect the parent integral though which gives ln(x). 😀😀
@dqrksun2 жыл бұрын
曹老師新年快樂🥳
@bprpcalculusbasics2 жыл бұрын
Thanks, you too! Btw where are you located? It is Monday 8:20 am for me.
@dqrksun2 жыл бұрын
@@bprpcalculusbasics 剛到了元旦
@dqrksun2 жыл бұрын
@@bprpcalculusbasics 最後那個問題有點東西
@itdepends53042 жыл бұрын
Your videos' thumbnails are cool How to make such ?
@mr.inhuman79322 жыл бұрын
Honest question: Is he saying "Chandu" instead of "Chain Rule" or is it just his accent? Or "Chandu" something I just dont know of yet? Btw I love your videos! I watch alls 3 of your channels!
@anshumanagrawal3462 жыл бұрын
It's a joke, Dr Peyam started it and he continued it, he used to say "Chain-Rule" earlier but now he says "Chen-Lu"
@kepler41922 жыл бұрын
3:48 what do you mean “x to the third power” don’t you mean “three times x”
@dianeweiss45622 жыл бұрын
Slip of the tongue
@bprpcalculusbasics2 жыл бұрын
Yea
@Jha-s-kitchen2 жыл бұрын
For the last question, i am getting f ' (x) = (1 + f(x)) / (3x - 3) How to solve further (If it is needed)
@anshumanagrawal3462 жыл бұрын
This is a seperable differential equation
@rolfjohansen53762 жыл бұрын
what if the integral starts at 2 instead of 1 ?
@chrisrybak49612 жыл бұрын
Nice video, as always, but I don’t understand why you can just ignore the lower (1) bound of the integral?
@juancamiloayacastano92322 жыл бұрын
Fundamental theorem of calculus. When you differenciate the integral you must evalue the integrand with the bounds and multipliy it by de derivative of the bound. (1)'=0 You can just ignore it for any constant
@chrisrybak49612 жыл бұрын
@@juancamiloayacastano9232 ahhh, ok. Thank you! 🙏
@anshumanagrawal3462 жыл бұрын
The question, as it's stated is wrong and has no solution, you can check that the function he's obtained doesn't satisfy the original equation As for your question, note that the integral from 0 to x and 1 to x (just as an example) only differ by a constant, so their derivatives are the same, in general the derivative of a function of type integral from a to x (where 'a' is a constant, a given fixed real number like 1 or 0 or 1/2, NOT a function of x) is just the integrand, this is just the first fundamental theorem of Calculus, for the general case, the type of Integral from g(x) to h(x), you have something called the Newton-Leibniz Integral rule, which can be proven easily by using the second fundamental theorem of Calculus and the chain rule, and if the lower bound or upper bound is a constant, it doesn't make a difference as in the rule you multiply by the derivative of g(x) and h(x) and the derivative of a constant is 0
@skylardeslypere99092 жыл бұрын
Somehow I got that in the last problem, f(x) was identically equal to 1. Which isn't really possible of course, because then you'd get 0 = ln(x) which is not true. It's 1AM tho so I probably made a mistake somewhere. My solution involved a linear dirst order differential equation.
@rshawty2 жыл бұрын
I don’t know if the answer is f’(x)=0 or if there’s no answer because I find f(x)=-1 but you can clearly see that in the original assumption f(x)≠-1, so I think I should answer “Impossible”, no ?
@rshawty2 жыл бұрын
It’s of course about the last question
@adityasuhane89302 жыл бұрын
I got 3
@rshawty2 жыл бұрын
@@adityasuhane8930 wtf, how ?
@adityasuhane89302 жыл бұрын
@@rshawty inside integral on the denominator we have 1+f(t) and on numerator we have f'(t)dt which is simply the differentiation of the denominator. We can substitute 1+f(t) =z Now we have, dz/z inside integral. Differentiate both sides as in previous problem, replace z by 1+f(t), put x^3+1 in place of t. Now you have 3x^2/1+f(x3+1) = 1/x Solve this like in previous problem and you have f(x) = 3x-4 So f'(x)=3
@rshawty2 жыл бұрын
@@adityasuhane8930 And did you check your answer ?
@dihydrogenmonoxid13372 жыл бұрын
I study Physics, the last thing that would happen to me is someone dating me LMAO Math is better anyway
@bringbackthedislikecount67672 жыл бұрын
Instead of valentine, wish you a happy new year. 恭喜发财
@bprpcalculusbasics2 жыл бұрын
Thank you. And yes “bring back the dislike count!!!
@nidhiagrawal33542 жыл бұрын
I don't get what valentine about blackpenredpen's question.
@jakesboty99362 жыл бұрын
The answer of last question is f'(x)=1/3 *(x-1)^-2/3
@Bilbobaggiins.02 жыл бұрын
Again I learn something new
@Bilbobaggiins.02 жыл бұрын
Thanks sir for this
@lhduy_vn2 жыл бұрын
How can u find the inverse of a function like that 😇
@juniorisrrael31842 жыл бұрын
Can you solve d/dx (f(g(x)))= - g(x)?
@nidhiagrawal33542 жыл бұрын
f(x) = -x Thanks 😊 I don't get what is valintine about blackpenredpen's question.
@juniorisrrael31842 жыл бұрын
is a composite function must find f and g
@nidhiagrawal33542 жыл бұрын
@@juniorisrrael3184 f(x) = -x + c, g(x) is not restricted. ...but what is valentine about blackpenredpen's question?
@dethmaiden19912 жыл бұрын
Based on the title I was sure the answer would be something like sqrt(-1)
@zgamer_56322 жыл бұрын
when I saw that you made it for Valentine's i thought the solution was gonna be a Heart-shaped curve
@yoav6132 жыл бұрын
Are we going to do this again or something different..well i don't know (and then evil smile hahahahaha 🤣🤣)
@JayOnDaCob2 жыл бұрын
I can’t :(. I have no idea how to do calculus I just watch these cause I think they’re interesting
@yashprajapati88572 жыл бұрын
I love you!
@tonyhaddad13942 жыл бұрын
last challenge : Integral (from 1 to x^3 +1) [ f ' (t) /( f(t) + 1 ) ] dt = ln(x) ln ( f(t) + 1 )( evaluted fom 1 to X^3 + 1 ) = ln(x) ln( f(x^3 +1 ) + 1) - ln(f(1) + 1) = ln(x) Ln( (f(x^3 +1 )+1)/(f(1)+1) ) = ln(x) (f(x^3+1) + 1) / (f(1) + 1 ) = x f(x^3 + 1) = (f(1) +1)* x - 1 let x ----> cuberoot(x - 1) f(x) = (f(1) + 1)*cuberoot(x - 1) - 1 Let x = 1 f(1) = - 1 ( if its continous ......) f(x) = - 1 f ' (x) = 0 Im not sure if im correct !!!!
@ThePowerOfRed212 жыл бұрын
if f(1) = -1 then ln(f(1)+1) can't exist
@dqrksun2 жыл бұрын
I got this too. But I realized f(1) can't exist or else you'll have a ln0
@bernizubi52172 жыл бұрын
Chen Lu!
@sagarmajumder78062 жыл бұрын
There should be log(1+x).. As,at x =0 LHS and RHS doesn't satisfactied.
@rogerkearns80942 жыл бұрын
Let me know if you need any help with all the St Valentine's day romance that you've just unleashed upon yourself. ;)
@adityasuhane89302 жыл бұрын
The last question answer.... I got 3
@plislegalineu30052 жыл бұрын
Idk the Q at the end is screaming "U-SUB!" to me, but idk if that would work and how that would work
@hypnovia2 жыл бұрын
You have the right idea!!! 🌟 What’s the derivative of the bottom?
@plislegalineu30052 жыл бұрын
@@hypnovia I know what u should be I'm just too lazy to do things that come after this lol
@dqrksun2 жыл бұрын
@@hypnovia f'(x)
@aklisilva97852 жыл бұрын
I think the integral is from 2 not from 1.
@Сладкоежка-ж5я2 жыл бұрын
Genius
@pedroribeiro15362 жыл бұрын
Ironic... A math video mentioning valentine's day... Mathematicians don't have girl/boyfriends
@alakkis2 жыл бұрын
do 10th graders take this stuff? if so, i'm interested