i dont get how you see x^4+1 and think "hm, lets just add 0 which can also be written as 2x^2*cos(2a) with a=pi/4, this will really help me"
@mundocanibaloficil5 жыл бұрын
experience...
@defunct13735 жыл бұрын
@@mundocanibaloficil well the first thing i thought after seeing x^4 + 1 was (x^2 + 1)^2, which has a 2x^2 term
@nastarkos57585 жыл бұрын
If you word it like that yeah, but that's not where the intuition comes from. It comes from something called the Poisson kernel.
@defunct13735 жыл бұрын
@@nastarkos5758 hmm ok
@nastarkos57585 жыл бұрын
@@defunct1373 ? I'm just saying. Wherever the video maker got this solution from probably failed to state this. It also shows up in basic generating functions.
@OleJoe6 жыл бұрын
Wow! Great Job. You should title your video "Easy Integrals Made Difficult".
@ale446210 ай бұрын
How do you solve it easier?
@OleJoe10 ай бұрын
@@ale4462 Contour integration using complex variables.
@taterpun62112 ай бұрын
Or use beta function
@Seek646 жыл бұрын
"This is just as counter-intuitive as everything else" 😂
@blackpenredpen6 жыл бұрын
The good old days! Btw, that was blackpenblackpen tho....
@rajibsarmah67444 жыл бұрын
Please make a video on integrating complex function
@rajibsarmah67444 жыл бұрын
Please
@JaskaranSingh-dz2wt3 жыл бұрын
Hii BPRP an easy challenge for u Solve for x : cosine (2x)=i
@typo6916 жыл бұрын
wow why didn't you become a doctor? you would've been a master at prescribing medicine with these skills 9:29
@Euquila6 жыл бұрын
That was a fun integral. It's amazing how all these steps seem both logical and magical at the same time!
@benthayermath6 жыл бұрын
Papa flammy, I need some fatherly advice. Teach me how to win the ladies with sexy integrals
@debajyotisg6 жыл бұрын
I am a simple man. I see 1/(x^4 + 1), I use complex analysis.
@gamma_dablam5 жыл бұрын
I use partial fraction decomposition and solve simultaneous equations in 4 variables because why the hell not ! ?
@mustafaunal18345 жыл бұрын
Residue Theorem
@budtastic12243 жыл бұрын
I use: int from (0,∞) of 1/(x^n +1) = (π/n)/sin(π/n)
@ajfalo-fi37213 жыл бұрын
@@budtastic1224 Could this be solved using Beta and Gamma functions? I think I remember it could
@budtastic12243 жыл бұрын
@@ajfalo-fi3721 sure can! Very nice proof here.... kzbin.info/www/bejne/rqPSaJZjoqmeZ8k
@ianprado14886 жыл бұрын
0 to infinity real quick
@tensorproduct36666 жыл бұрын
you roasted that integral.
@anuvette5 жыл бұрын
😂😂😂
@davidberkowitz76976 жыл бұрын
Been a math teacher for twenty years. Love this proof, love the enthusiasm. You are a great lecturer.
@mathematicalhuman68585 жыл бұрын
0:24 *_„And if you’re a smart ball...“_* this gave me tears of joy
@RandomDays9065 жыл бұрын
There's an amazing generalization of this integral that says Integral(0, inf)[x^(a-1)/(1+x^p) dx] = pi/(p*sin(a*pi/p)). For this case, a=1, p=4 gives pi/4sin(pi/4) = pi/2sqrt(2).
@kartikchoubisa6 жыл бұрын
I just found this another nice way: put x=1/t in the original integral, rearrange the fractions so the the denominator of this new expression becomes same as that of orignial expression. Add them both, just like you did (but without introducing the cos(a) thingy). Divide the numerator and denominator by x^2. The denominator becomes (x^2+1/x^2) which is equal to [ (x- 1/x)^2 +2]. Substitute u in place of (x- 1/x) and the expression changes into simple [1/(a^2 + x^2)]form.
@kemokidding6 жыл бұрын
Except that u = (x - 1/x) leads to a really gnarly expression for dx in terms of u and du.
@allaincumming63136 жыл бұрын
Is that the algebraic twins method?
@You127835 жыл бұрын
for integrals of the form 1/(1+x^n) with limits going from 0 to infinity the value is given as [pi/n]/sin(pi/n) .. just substitute value of n to get answer ...
@W.M.-2 жыл бұрын
@@You12783 Be careful, your formula only works for even n
@Paulovrish73344 жыл бұрын
I freaking enjoy watching you solve this type of problems
@PapaFlammy694 жыл бұрын
@debajyotisg6 жыл бұрын
Can I just say, I never thought watching someone solve integrals would make such a satisfying video series? Mad respect!
@sethuramanjambunathan4 жыл бұрын
Fantasic! I knew to solve this on complex plane using residue theorem. This is fantastic. My appreciation.
@mlliarm6 жыл бұрын
That's a lot of creativity for little over 15 mins of an explanation. I'm amazed :) Keep up the good work !
@chessandmathguy6 жыл бұрын
Amazing. The whole thing. Every step made sense, and the final answer is just beautiful. Thanks for posting this!
@OhDannyBoy5126 жыл бұрын
I would never have thought to do most of these steps, but you make it seem so logical and straightforward :D
@Henrikko1236 жыл бұрын
Have you considered making a ‘German plus Math’ tutorial series? Something like teaching both German and math at the same time. I would watch the shit out of that, probably even supporting you on Patreon.
@Henrikko1236 жыл бұрын
Flammable Maths I know ;) I’ve watched a lot of them. Great work!
@michaelgeinopolos69116 жыл бұрын
This is absolutely ridiculous.
@olimatthews56366 жыл бұрын
New to your channel but loving it so far. How old are you? Where did you go to uni? Are you gonna do a Q&A? What is your favourite piece of maths?
@Applefarmery6 жыл бұрын
„Woop woop“ thats the sound that the police makes 😂
@ozzyfromspace4 жыл бұрын
I expected you to just contour integrate that thing, then I saw cos(2a) and realized, "oh shiiii, we're about to have a good time!" This was a super fun video, thanks Papa Flammy! 🙌🏽🙌🏽🙌🏽🔥😁🌠
@PapaFlammy694 жыл бұрын
@dragonite77806 жыл бұрын
Jesus, what a madman, subbed.
@carlosgiovanardi81975 жыл бұрын
EXCELLENT - NO WORDS - GREAT TEACHER
@karthiksatyanarayana35594 жыл бұрын
we can complete the question by substituting x^2=tanx,and solving we get integral of cot^1/2(x) which we can solve
@karthiksatyanarayana35594 жыл бұрын
this method is faster than what he said
@anegativecoconut49406 жыл бұрын
FH: How many techniques to compute the 1/(x^4+1) integral you have? AM: Don't know, 5 or 6 I guess. FH: You are like a first grader, watch this.
@michelkhoury14706 жыл бұрын
Yes there are many ways to solve this
@michelkhoury14706 жыл бұрын
But not for integral of 1/(1+x^50) but I solved it 😀
@anegativecoconut49406 жыл бұрын
Michel Khoury It's easy, the final answer is pi/(50sin(pi/50)) but can you give me an analytical form of the indefinite integral?
@michelkhoury14706 жыл бұрын
Thomas Torrone yes of course it's very easy
@michelkhoury14706 жыл бұрын
Thomas Torrone okay to evaluate the indefinite integral you can transform the integral into an incomplete beta function by the substitution t=x^n
@ronbannon2 жыл бұрын
GREAT JOB. I will share this with my students and publish a different path to this solution. I will try to post a video later this week.
@ronbannon2 жыл бұрын
I added this question to my course notes and will encourage my students to pay attention to your insightful technique. You can see my video solution, using a different method, on KZbin: kzbin.info/www/bejne/pWSngIeJaNufgqM
@VivekYadav-ds8oz4 жыл бұрын
I like the more well-known method more. => integral dx / (x^4 + 1) = (1/2) integral 2 * dx / (x^4 + 1) => 2 can be written as 1 + 1. Add 0 in numerator which can be written as x^2 - x^2. => (1/2) integral ( (1 + x^2) + (1 - x^2) ) dx / (x^4 + 1) => Separate integral with one having (1 + x^2) in numerator and other having (1 - x^2) in numerator. => Now it's easy. Let's say I1 = (1+x^2) dx / (x^4+1) Divide by x^2 in numerator and denominator, I1 = (1 + 1/(x^2)) dx / (x^2 + 1/x^2) // Rearranged the numerator in same step. => (1 + 1/x^2) dx / (x^2 + 1/x^2 - 2 + 2) Now, x^2 + 1/x^2 - 2 can be written as x^2 + 1/x^2 - 2*x*(1/x), which is nothing but (x - 1/x)^2. So, => (1 + 1/x^2) dx / ( (x - 1/x)^2 + 2) We can now clearly see that the derivative of (x - 1/x) is present in numerator, so substituting (x-1/x) = t would be the right thing to do. x-1/x = t => 1 + 1/x^2 dx = dt => I1 = dt / (t^2 + sqrt(2) ^ 2) => I1 = 1/sqrt(2) arctan(t/sqrt(2)) + c, where t = x - 1/x. Done! Now that one knows this method, one can easily find I2 i.e (1 - x^2) dx / (x^4 + 1).
@ernestschoenmakers81815 жыл бұрын
You can factor out 1+x^4 into (x^2-sqrt(2)x+1)(x^2+sqrt(2)x+1) and solve the integral by the method of partial fractions.
@Hexanitrobenzene5 жыл бұрын
Of course you can, but that's boring... That's why there are nerds like Papa Flammy who invent some ingenuous methods and, lucky us, mere mortals, share them with us :)
@ernestschoenmakers81815 жыл бұрын
@@Hexanitrobenzene I don't see what's boring about it, this solution just came up to me.
@Hexanitrobenzene5 жыл бұрын
@@ernestschoenmakers8181 Well, you can factor x^4 +1 by taking fourth complex root of -1 and then multiplying binomials corresponding to conjugate roots. Completely standard. Partial fractions are also completely standard. By boring I mean the path which is obvious, yet tedious. Partial fractions are more suited to computers, not humans...
@ethanjensen6616 жыл бұрын
This integral is easier than people think. It can be "factored" into two quadratic polynomials, do partial fractions, and so on
@SiwakSerg6 жыл бұрын
The very first thing I thought about was the residuals (the complex function approach and complex analytic integration), I think it's a standard thing to do, but your method is quite peculiar and clever. Well done)
@46pi266 жыл бұрын
The intro=the birth of a goddamn legend
@u.v.s.55836 жыл бұрын
To "Good morning, fellow mathematicians!" you should record a chorus singing "Good morning Papa!"
@46pi266 жыл бұрын
U.V. S. Like the blackpenredpen "yay!"
@krithikaa41884 жыл бұрын
Wow mind blown!!! I never thought of solving like this. Thank you 🙏🏼
@priyanshusingh34515 жыл бұрын
This is really a crazy approach
@richardheiville9375 жыл бұрын
Perform the change of variable y=1/x, I=integrate(0,infinity, x^2/(1+x^4)) therefore, 2I=integrate(0,infinity, (1+1/x^2)/((x-1/x)^2+2)) perform the change of variable y=x-1/x, 2I=integrate(x=-infinity,+infinity, 1/(x^2+2)) therefore I=integrate(x=0,+infinity, 1/(x^2+2))=Pi/(2*sqrt(2))
@jaredwhite49346 жыл бұрын
I think I like watching cute guys solve sexy integrals even more than those "hot guys and baby animals" videos.
@richardturietta94556 жыл бұрын
nice! I remember doing all sorts of math gymnastics back in college...
@henrykwieniawski72336 жыл бұрын
Have my babies Papa Flammy
@nikhilnagaria26723 жыл бұрын
0:01 the best intro of Papa flammy ever
@danielcardenas26075 жыл бұрын
I really enjoy your videos, you're so good doing this tricks and solve that crazy problems
@AlEx-ro7kd6 жыл бұрын
i dont understand much of this but your videos are entertaining
@CornishMiner6 жыл бұрын
Whoa! Retro Flammy.
@duckymomo79356 жыл бұрын
That was quite the adventure for that integral The indefinite integral is scarier
@duckymomo79356 жыл бұрын
Flammable Maths Complex analysis would’ve worked as well The general solution to Integral from 0 to infinity of 1/(x^(2n) + 1) = pi/(2n*sin(pi/2n))
@孙林可6 жыл бұрын
Wow, what can I say? I guess if Feynman had watched this he would open IMU's locker and award you with Fields Medal.
@joshuawood10826 жыл бұрын
Thank you Papa, very cool!
@anderrafaellinaresrojas37725 жыл бұрын
Nobody: Flammable: :D
@brayanrojas77544 жыл бұрын
:v?
@TheSam19025 жыл бұрын
This is exactly why I watch this channel !!
@charliepilgrim10656 жыл бұрын
Woop Woop! That's the sound the police makes
@TheNachoesuncapo6 жыл бұрын
Me:Hey Pappa flammy do you do any sports?you look great! Pappa:no I just solve crazy ass integrals from time to time :)
@restitutororbis9646 жыл бұрын
Nacho He lifts heavy infiniti bois for about 3 hours a day.
@TheNachoesuncapo6 жыл бұрын
No pi-in no gain
@Bjowolf25 жыл бұрын
Chalk gymnastics, blackboard lifting, extreme integration without limits, bending the rules... 😂
@visheshmangla26506 жыл бұрын
this sucker is a must for board exams(class 12) in India.
@ИванРодькин-ю7ч6 жыл бұрын
Now, try this: integral from -inf to +inf ln(x)/(x^2+1) Pretty nice answer
@duckymomo79356 жыл бұрын
From 0 to infinity is just 0 -inf to inf is “don’t worry about it” (i*pi^2)/2 Use complex analysis for the second one
@Mr_Academic984 жыл бұрын
Great inspiration
@PapaFlammy694 жыл бұрын
@46pi266 жыл бұрын
1:08 Bprp=Bruce Lee Makes sense I guess
@dhoyt9025 жыл бұрын
This video is a year old but I still clapped.
@chaos47856 жыл бұрын
Math is fun!!! You make things look a lot easier than they really are😂 I always enjoy watching your videos👍
@zeroleader6 жыл бұрын
Whoo! Excellent work, dude
@lesnyk2556 жыл бұрын
That was a wild ride! Loved it! Seems to come from the same mindset as Feynman's integration of sinc(x) - introducing a parameter whose special case is the integrand you actually want to plug in....... (see blackpenredpen)
@arjunv75974 жыл бұрын
I did this in the back whiteboard of my Calc AB class, except I used PFD and some really sketch u-subs. Was way more approachable for a high schooler with no rigorous training lol.
@slavinojunepri7648 Жыл бұрын
Impressive solution from an alternate universe
@46pi266 жыл бұрын
Gotta chow down on some infinity bois before work for protein
@charllsquarra16776 жыл бұрын
badass way to integrate
@moslemasultana93886 жыл бұрын
balance the denominator by 1/2[(x^2+1)-(x^2-1)], then separate and divide up and downside by x^2.
@DerekBamonte2 жыл бұрын
After just having finished calculus 2 in the US, that shit was wild.
@DarioCasarotti-qv7vv Жыл бұрын
I love Contour integration and Residue theorem. Much faster
@Zzznmop6 жыл бұрын
I came back to this video, I realized what zero is. I am smart boy like papa says
@seegeeaye Жыл бұрын
I did it without using 2x^2cos2a, but still use x = 1/t. We then have 2I = int of (x^2 + 1) / x^4 + 1, then factorize the denominator followed by using partial fractions and finally end up with two arctangent functions before getting the answer of sqrt 2 pai /4
@cytyy85313 жыл бұрын
we just had an exam today with this kind of integrand.
@williamtachyon26306 жыл бұрын
Why could he wrote 1 + x^2 in the numerator (in about 4:55) ? Where this +1 came from?
@MarioFanGamer6596 жыл бұрын
It's coming from adding integral before and after it was rearranged together (i.e. added the top and bottom integral together ‒ both, the integral boundaries and the denominator are the same).
@paparapiropip876 жыл бұрын
Man, you’re the God of integrals
@atrimandal43246 жыл бұрын
It was kinda doable till around 10:15,after that it became typical Flammable 🔥🔥😂 Btw, that A4 paper stuff in your website was great ❤️
@bensolomons42994 жыл бұрын
Now we can use some sexy little symmetry tricks which will turn this into something really spicy
@אדוארדששון-ע8ס3 жыл бұрын
Your problem is only a special case of the integral of 1 divided by 1 + x^n, whose value is (pi/n)/sin(pi/n), which is solved using substitution, the gamma and beta functions, and the relation between the product of two gamma functions and sine! The general problem can also be solved using complex variable integration.
@twakilon5 жыл бұрын
Could have gone for complex analysis, but yeah, this works too.
@shubhamaryan82025 жыл бұрын
Really studying with you maths has become easier
@si486906 жыл бұрын
excellent video
@derpsalot68534 жыл бұрын
Could someone explain to me the part where he added I + I = 2I? Why is he allowed to change dt -> dx? doesn't he have to integrate the function back with respect to x? Kinda new to integration so could use some help on a few fundamental properties
@pituitlechat38076 жыл бұрын
I Flammy You dont need to use trig identity. Your trig functions are just a constants and you can replace it by cos²a = sin²a=(√2/2)²=1/2 then : your denominator x^4+1 become (x²)² + 2x² +1 -2x² = (x²+1)² - (√2)²x² = (x² + √2x + 1)(x² + √2x - 1) and in your numerator you can add the odd function -(√2)x, simplify with the denominator and obtain 1/(x² + √2x + 1) then you split 1 in 1/2 + 1/2 or (√2/2)² + (√2/2)² and you have 1/ [(x + √2/2)² + (√2/2)²] and it's the same answer that 1/ [(x + sin(a))² + cos²(a)]... Yay!
@MathIguess5 жыл бұрын
Whoop whoop, that's the sound the police makes xD excellent I'm binging your videos, man, and all I can say is thank you xD
@EAtheatreguy3 жыл бұрын
I just used substitution and assumed an integral from infinity to infinity was 0. I don't know if my methods were sound, but I got the same answer.
@__shubham__4 жыл бұрын
*dx is Nuthin' but a G Thang* . If you forget to put a +C ( in indefinite boi) then the gangster's gonna rude.
@JohnSmith-iu3fc5 жыл бұрын
Thank you! n You also verify that integral of // 1/x^4 +1 dx and x^2/x^4+1 dx is equal . So, the value of integral of x^2 +1/x^4+1 dx is squrt 2 *pi , the same value as integral of 1/x^4 +1 dx plus x^2/x^4+1 dx.
@pritishmoharir38305 жыл бұрын
Amazing stuff
@JohnSmith-iu3fc5 жыл бұрын
Too flammable! Also too pedantic!!! I need more explanations of your logical leaps in your video. How about the result " pi/2" for the arctangent (x^2) when the x goes unlimited?
@allowfire146 жыл бұрын
Very nice! A simpler approach would of course be to write 1/(x^4 + 1) as (i/2)/(x^2 +i) - (i/2)/(x^2 - i), which can be integrated directly. 1/2 * [ sqrt(i)atan(x/sqrt(i)) + sqrt(-i)*atan(x/sqrt(-i)) ] | 0 to inf = pi/4 * (sqrt(i) + sqrt(-i) ) = pi/2*cos(pi/4) = sqrt(2)*pi/4
@tonyng07146 жыл бұрын
How did pi/4 * [sqrt(i) + sqrt(-i)] become pi/2 * cos(pi/4) ??? Stuck in this part
@allowfire146 жыл бұрын
@@tonyng0714 well i is nothing but exp(i*pi/2), or 90 degree counterclockwise rotation in the complex plane. Sqrt(i) = i^(1/2) = exp(i*pi/4). And likewise sqrt(-i)=exp(-i*pi/4). Now by euler's identity cos(z) = 1/2 * (exp(z) + exp(-z)) ; in this case replace the argument z with pi/4. I think the rest should be straight forward
@dnranjit5 жыл бұрын
making 1=2cos(2a) for a=pi/4 was magic...from a creating thinking perspective ... I would really like to understand how you came to the conclusion that this transposition is needed.Does it come by practice or a general rule that if you see a particular form then this particular modification can be applied. Or is it just from pure trial and error ?
@giannicolombo39935 жыл бұрын
Amazing! Thanks a lot.
@giannicolombo39935 жыл бұрын
@@PapaFlammy69, where did you study Mathematics? Have you some suggestions about books?
@ashuthoshbharadwaj67036 жыл бұрын
Hear me out here, @ 10:16, the first integral is super easy to solve because the addition of the two expressions in the denominator is twice the numerator and after that a bit of algebraic manipulation should give us an sec(a)*arctangent((x+sin(a))/cos(a)) and the other integral also becomes sec(a)*arctangent((x-sin(a)/cos(a)) and now you just have to plug in the values of the lower and upper bounds and multiply by one-eighth ( because we stated that sum of expressions in Denominator is 2*(numerator)). I just think that adding the odd fuction integral is absolutely ingenious :) but unnecessary :/
@guillaumedeplus77276 жыл бұрын
What about some generalisation, the integral from 0 to t of 1/(x^n + 1) dx ? :)
@dugong3694 жыл бұрын
Dr Payam has a good video that shows the integral from 0 to infinity is pi/n/sin(pi/n)
@neo_tsz6 жыл бұрын
Huh...my mind is satisfied.
@thexabi1235 жыл бұрын
What a lovely "2" at 13:27
@kelvinella4 жыл бұрын
Let t=1/(x^4+1), play around with it a little you should get 1/4*Beta(3/4,1/4) = 1/4*Gamma(3/4)Gamma(1/4) = 1/4*pi/sin(pi/4) = sqrt2*pi/4
@ryankoepke55256 жыл бұрын
You could also factor and use partial fractions to solve that.
@zhangray6636 жыл бұрын
I think this can be solved via residue theorem which won’t require so many tricks.
@Czeckie6 жыл бұрын
plug the the new information in, fellas!
@junya42844 жыл бұрын
Note: My first language isn't English. 12:45 Perhaps, 1/4cos(a) is mistake. I believe correct is 1/4cos^2(a) so Answer is π/2 maybe. But I know you are a professional of course. I'm very confused... please help me!
@junya42844 жыл бұрын
Finally I'v noticed my answer, which is not anything, is mistake. It's so simple and seem often. Differential of tan^-1(~) has 1/cos(a) in denominator.