I have lots of imaginary powers. The ability to stop bullets being one of them! Great presentation
@josephjatto67593 жыл бұрын
Wow 😲
@Questiala124 Жыл бұрын
@@josephjatto6759imaginary powers.
@yoylecake313 Жыл бұрын
@@josephjatto6759 he said that it was an *imaginary* power
@the-boy-who-lived6 ай бұрын
@@yoylecake313 It's sarcasm bro
@Monia777773 жыл бұрын
My God, had my lessons been this exciting, I'd have stayed for a PhD... ;( LOVE what you do here!
@hussain17203 жыл бұрын
That rotation is quite impressive.
@KeyFreak23012 жыл бұрын
Thanks! I really needed this. I´m currently preparing for my bachelor thesis about NMR-Spectroscopy and was stuck on the representation of a oscillations with complex numbers. 7:40 blew my Mind!
@Teabonesteak3 жыл бұрын
Platinum Content! Eddie you are a real Gent! 😃
@sohaibmalik85843 жыл бұрын
The rotation is also around the circumference of the unit circle
@griffinbur111810 ай бұрын
You’re a great teacher Eddie
3 жыл бұрын
Your lessons are just BRILLIANT! Thank you.
@thegajuar44593 жыл бұрын
this is so fascinating i love everything about this channel. love from india !!
@forever_put_at_ease2 жыл бұрын
7:56 every math student
@theboombody3 жыл бұрын
The complex plane is incredible. Even when I use it in my work I can't fully grasp it or even believe it.
@lukiepoole92543 жыл бұрын
"i" doesn't exist and sqrt(-1) doesn't exist. There is only ONE real "sqrt(-1)" and that is sqrt(2x2 Matrix[-1])
@damianflett63603 жыл бұрын
@@lukiepoole9254 can’t tell if crank or really good meme
@lukiepoole92543 жыл бұрын
@@damianflett6360 sqrt(-1) has no real roots. It makes it worst when you use ijk= -1 You can assign j as sqrt(-1) but then what is i and k? You see the insanity? Only matrix has the real i, j, and k values.
@damianflett63603 жыл бұрын
@@lukiepoole9254 you’re confusing quaternions and complex numbers. The two are completely different systems with different applications, which rarely interact, and both of them are perfectly well defined.
@lukiepoole92543 жыл бұрын
@@damianflett6360 What I am saying isn't that. ijk= -1 i^2 = -1 j^2 = -1 k^2 = -1 if j is sqrt(-1) wtf is i and k?
@kaarunyamummoorthi7580 Жыл бұрын
WOW. i am actually loving math now
@fabriziosciacca44763 жыл бұрын
Hey you, have a nice day tomorrow
@JohnDoeSteveAustin3 жыл бұрын
Grazie
@corneliusshivambu20143 жыл бұрын
I will thank you very much stranger
@anonymousgod25063 жыл бұрын
why not today?
@thecaptainyaya68073 жыл бұрын
Thank you, You
@alaingamache3908 Жыл бұрын
Then to finish by saying that there’s not a unique value for 2^i (if we allow coterminal angles)
@matherman111110 ай бұрын
me before watching: how is it even possible for these calculators to compute that stuff? me after watching:I AM UNSTOPPABLEEEEEEEEEE
@THE_ONLY_GOD2 жыл бұрын
Woohoo! I have a new imaginary power!
@theproofessayist84413 жыл бұрын
I hope Mr. Woo goes over i^i - wait that thing is REAL???
@sumanpandey39923 жыл бұрын
Beautiful
@brd87642 жыл бұрын
Potential.
@justrevision68203 жыл бұрын
Such a sick teacher.
@thanaa6401Ай бұрын
What's your problem
@fabriziosciacca44763 жыл бұрын
I need to know how old is this guy.
@iiChosenOne3 жыл бұрын
36
@thefoolishgmodcube26443 жыл бұрын
@@iiChosenOne Commented 36 minutes ago
@vaar85843 жыл бұрын
@@thefoolishgmodcube2644 commented 36 ÷ 4.5 months ago
@uninstalledsoftwares62663 жыл бұрын
Why are student at a 90 degree angle to you?
@tadejsivic5343 жыл бұрын
So cool. So no matter the base (e^i or 2^i) it always rotates around a unit circle? So we write e because it just looks the nicest?
@damianflett63603 жыл бұрын
The reason e is used as opposed to say 2 or any other number in general is so Euler’s formula can be used.
@carultch Жыл бұрын
If we keep the base as base e, then the rotation rate around the unit circle is such that we travel 1 radian for every 1 unit in the number multiplied by i. If we change the base, then we use the change-of-base rule, and get the following for a general base b: b^(i*theta) = e^(i*theta*ln(b)) This means that it would equal: b^(i*t) = cos(ln(b)*t) + i*sin(ln(b)*t) (Since it's not necessarily equal to an angle, I'll simply call it t) As you can see, this means we change the rotation rate by a factor of the natural log of the base. For 2^(i*t), we get cos(ln(2)*t) + i*sin(ln(2)*t). This means, when t = 1, we only travel about 69% of 1 radian around the unit circle, rather than 1 radian. This means instead of travelling 1 meter, if the unit of the unit circle were meters, that we'd travel 69 cm, and end up at an angle of 0.69 radians or 39.7 degrees. If we wanted to travel a quarter turn, instead of selecting t to equal pi/2, we'd have to select t to equal pi/(2*ln(2)), if we were using 2 as the base of the complex exponential instead of e.
@claudelorrain-bouchard69412 жыл бұрын
Something bothers me at 7:41 , when the dot gets near x = -1.... why isn't the value of a = pi....
@thraelyad6751 Жыл бұрын
the base of the complex exponent in this case is 2, not e
@high47023 жыл бұрын
Can it be a sophism?
@mortified7763 жыл бұрын
An imaginary power is your power to impress any member of the opposite sex after your eighth pint.
@pickachu3739 Жыл бұрын
Why are the students turned to other way?
@valentinkadushkin324 Жыл бұрын
No-one reacting there is litterly kid learning complex analysis ?
@Crackkka2 жыл бұрын
Are they Learning complex analysis at 9?!?!
@forever_put_at_ease Жыл бұрын
I thought this was a college course
@Crackkka Жыл бұрын
@@forever_put_at_ease they look don't like college students at all
@forever_put_at_ease Жыл бұрын
@@Crackkka they're Asian(joke)
@ShriRadha_bhakt3 жыл бұрын
Hello sir i want to ask that (1/e)^e and (e)^1/e are same or not
@damianflett63603 жыл бұрын
They aren’t. Why would they be?
@damianflett63603 жыл бұрын
0:01 WHEN THE IMPOSTER IS SUS
@Crackkka2 жыл бұрын
jerma invades every bits of my personal space
@faustobondt62313 жыл бұрын
Eeeeeh a new vid
@pelasgeuspelasgeus463410 ай бұрын
Complex numbers are fake invented math because (1) the definition of a complex number contradicts to the laws of formal logic, because this definition is the union of two contradictory concepts: the concept of a real number and the concept of a non-real (imaginary) number-an image. The concepts of a real number and a non-real (imaginary) number are in logical relation of contradiction: the essential feature of one concept completely negates the essential feature of another concept. These concepts have no common feature (i.e. these concepts have nothing in common with each other), therefore one cannot compare these concepts with each other. Consequently, the concepts of a real number and a non-real (imaginary) number cannot be united and contained in the definition of a complex number. The concept of a complex number is a gross formal-logical error; (2) the real part of a complex number is the result of a measurement. But the non-real (imaginary) part of a complex number is not the result of a measurement. The non-real (imaginary) part is a meaningless symbol, because the mathematical (quantitative) operation of multiplication of a real number by a meaningless symbol is a meaningless operation. This means that the theory of complex number is not a correct method of calculation. Consequently, mathematical (quantitative) operations on meaningless symbols are a gross formal-logical error; (3) a complex number cannot be represented (interpreted) in the Cartesian geometric coordinate system, because the Cartesian coordinate system is a system of two identical scales (rulers). The standard geometric representation (interpretation) of a complex number leads to the logical contradictions if the scales (rulers) are not identical. This means that the scale of non-real (imaginary) numbers cannot exist in the Cartesian geometric coordinate system.