hey! don't hesitate to follow us and to take a look at our videos which deal with the same topics :)
@vijayjayaram6063 жыл бұрын
@@indexima6517 I guess the videos on ur channel deals with more on, what do we do after receiving the data, analytics if I understand correctly. Here, its more of pumping the data from one place to a common place, and make it available for interested people down the lane
@gautamdeusa2 жыл бұрын
@@ITkFunde It's truly one of the finest and easiest video to follow and relate. Many thanks. Will check other videos.
@lwhieldon12 жыл бұрын
Thank you for breaking down concepts that are difficult to understand!
@nathancarranza98603 жыл бұрын
Something I’ve noticed is that Indians are good teachers and give great illustrations. Good work. Greetings from the US.
@ITkFunde3 жыл бұрын
Thanks Nathan for making me feel even more proud of being an Indian thank you for the compliment means a lot brother 🙏😊
@fsfernandes203 жыл бұрын
Yes Indians like to make difficult concept easy
@nathancarranza98603 жыл бұрын
I don’t use my real name online, but I do give real compliments.
@AutitsicDysexlia3 жыл бұрын
@@nathancarranza9860 Plot Twist: His real name was not Nathan. It was always Vladimir Putin.
@visionxx86563 жыл бұрын
Can't believe Putin is from US
@ericdasse81743 жыл бұрын
That was great! As a data engineer in the making, this is the first time I have understood the concept of data pipelines so clearly. Thank you very much
@lukmanaliyu73862 жыл бұрын
Hello Eric, I'd love to know how it's going for you at the moment with the DE track
@altamashjawad66913 жыл бұрын
Loved this video, probably the best explanation on advanced data pipeline out there. If in your next videos, maybe create a playlist which can show each of the section of this pipeline in detail with little examples using Python or any language etc. Just an idea, brilliant work!
@MrBignate123454 жыл бұрын
Please continue to create videos like these! So easy to understand. Love your visual teaching style and the examples you give.
@ITkFunde4 жыл бұрын
Thank you MrBignate...The aim is to simplify these techie jargons for everyone to correlate and enjoy learning.
@bigglesharrumpher4139 Жыл бұрын
Great video - it seems while technology has advanced, the concepts of batch loads and real-time data is actually decades old. Back in early 2000's we controlled all ETL and real-time loads with Unix or DOS or SQL scripts that provided return codes for success/failure which triggered alert emails, and we had KPI's for Data quality, backing-out jobs for failed loads, and many other control systems. It just seems there are more 'out-of-the-box' software to handle these now as opposed to custom-built solutions. Great presentation!
@Thekingslayer-ig5se Жыл бұрын
Nice
@MrBignate123454 жыл бұрын
Would love to learn more about how to choose the right frameworks/technologies for data pipelines and data warehouses/lakes for differing requirements. It would be nice to see a playlist of you designing or comparing solutions for an analytic stack.
@ITkFunde4 жыл бұрын
Thanks MrBignate I have created various playlists one of which is " Crunching Data Series "...I will surely make more videos on similar topic. It is because of encouragement from audience like you which helps me move forward so thanks and really grateful for your positive feedback.
@burimcakolli34004 ай бұрын
Great Teacher! Used your Video for my teaching in switzerland
@ITkFunde4 ай бұрын
Thanks Mate, so happy to see it's helping 😊😊
@mardiidking4030 Жыл бұрын
This topic is so complex as a beginner, but I understand this explanation so well. I didn't even have to go back in the video or rewatch it to understand. This is beautiful.
@ITkFunde Жыл бұрын
Thank you so much for your kind words and support 🙏🙏♥♥
@juanpabloahumada34592 жыл бұрын
Thanks!
@ITkFunde Жыл бұрын
thanks
@lcsxwtian3 жыл бұрын
Simply one of the best videos on data pipeline on KZbin. Deserves so much more attention.
@sy-vf4js4 жыл бұрын
And again, another easy-to-digest video. Thumbs up!
@ITkFunde4 жыл бұрын
Thank you 🙏🙏☺️
@squarehead6c14 жыл бұрын
Great intro, just what I needed. I learned the distinction between ETL and general pipe lines, and Kafka's place in the architecture.
@ITkFunde4 жыл бұрын
Thanks Ronnie☺️
@alexanderulloaopazo62754 жыл бұрын
Thank you! I had read a lot of papers about Data Pipeline, but I couldn't get the main idea. However, your video was so easy to understand!! Now I have a better picture of the complete process. Thanks again.
@ITkFunde4 жыл бұрын
Thank you Alexander !!!
@prabur40273 жыл бұрын
This would be the Best start for the Data Engineers.. A clear precise and short pictorial representation of Data Pipeline (Basics). Best video so far I had seen.. 😊 Thanks.. Much Appreciated.. 👍
@ITkFunde3 жыл бұрын
Thanks Prabu 👍☺️🙏
@vivekjoshi37692 жыл бұрын
Do data analysts also use data pipeline creation in their jobs ? Or are they expected to know it ? Asking as some companies write knowledge of ETL in JDs.
@prabur40272 жыл бұрын
@@vivekjoshi3769 knowing any of the ETL tools would help in constructing the pipelines and they can visualize data flow from source to target.. Yes mostly it is used..
@ramakrishnachimmani72734 жыл бұрын
Thank you. The best way of explanation. I was looking for this kind of video for long time. As a traditional ETL developer, I questioned my self, why people are using a term called 'Data pipeline' though we have ETL process and what is the exact difference between them. Thanks again.
@ITkFunde4 жыл бұрын
Thanks Rama for your positive feedback !!
@juliansihite12892 жыл бұрын
This guy really explain everything clearly and simple! Good job brother, keep sharing and contributing! You're a great teacher :)
@ITkFunde2 жыл бұрын
Thanks Julian 😊❤️🙏
@empressbelless32323 жыл бұрын
This is meant to be a compliment. I appreciate how articulate your English is with each word you speak! Easy to listen to!
@kenford37384 жыл бұрын
Great job explaining the difference between Data Pipelines and ETL.
@ITkFunde4 жыл бұрын
Thanks Ken 🙏☺️
@ravirty89623 жыл бұрын
Simply superb tutorial with good example.
@ITkFunde3 жыл бұрын
Thanks Ravi☺️
@Gridblue2 жыл бұрын
Thank you for the video, I learnt what data lake hydration projects are, my previous company had no proper KT, I struggled to grasp what I was doing. This was very nicely explained and cleared the doubts that I had.
@ITkFunde2 жыл бұрын
Thanks♥️
@sudhakarg53372 жыл бұрын
thanks for explaining all those things i need real example of real time data and batch processing data in using adf plzzzzz do video
@chocochipbananasplit4 жыл бұрын
I got more out of your video than reading 5 articles on the matter! Your content is great!
@hasmilaomar55622 жыл бұрын
It is good that u explain the concept of data pipeline by referring to water pipeline. So much easier to understand and remember. Thank you for your video!!
@KolawoleAdekoya2 жыл бұрын
Simplified and clear explanation of the concepts. Great diction and presentation. Well done!
@ITkFunde2 жыл бұрын
thanks Kolawale
@ramakambhampati5094 Жыл бұрын
You are a real "Data Pipeline Spiderman".... fantastic instructor..please share more videos....thanks
@ITkFunde Жыл бұрын
Thanks Rama ☺️☺️
@Manoj4194194 жыл бұрын
Great explanation and examples used. Thanks a ton !!
@ITkFunde4 жыл бұрын
Thanks Manny
@rohidaskumbharkar72772 жыл бұрын
This was extremely helpful for understanding to Real and batch data streaming and also lambda architecture.
@ITkFunde2 жыл бұрын
Thanks Rohidas
@ravinduabeygunasekara8333 жыл бұрын
This is superb!. I am very strange to Data Engineering, and this video gave me a super insight! Keep up the good work
@ITkFunde3 жыл бұрын
Thanks Ravindu ☺️
@mitchelleleeuw2266 Жыл бұрын
☺️I’m new in Data Engineering and man you created a clear picture of what I’ve been learning and trying to understand 🙂love this… definitely subscribing 🤩
@K0n5tant4 жыл бұрын
Your way of explaining these concepts is excellent, thank you!
@ITkFunde4 жыл бұрын
Thanks a lot
@NathJones112 жыл бұрын
A very clear explanation of the differences between the two methods. Often I see everything limped under an ETL umbrella, when it may not accurate.
@ITkFunde2 жыл бұрын
Thanks 🙏
@kalyanchakri52584 жыл бұрын
Love your way of teaching in a simple understandable concepts. Im mad of you..!
@ITkFunde4 жыл бұрын
Thanks Kalyan for your feeback it helps a lot..
@arunachalampalani4321 Жыл бұрын
Couldn't have asked for more. Very well explained, Thank you mate.
@sid1r3 жыл бұрын
Thank you so much for a great and easy to understand data pipeline introduction. I love how you focus on the concepts and not jargons, as it allows for people to understand the essence of data pipeline.
@othmanbelmouzouna38933 жыл бұрын
Very good tutorial with valuable explanations. Thanks.
@ITkFunde3 жыл бұрын
Thanks Othman
@dhritimanbnrj3 жыл бұрын
best productive 10 minutes of my life.
@ITkFunde3 жыл бұрын
Thanks Dhritiman for this super comment you made my day 🙏☺️
@anjanikumarchoubey79693 жыл бұрын
Very effective lecture in introducing the data pipeline and promote to adopt in improving the Business /egovernance services and advisories
@ITkFunde3 жыл бұрын
Thanks Anjani
@brentcos93704 жыл бұрын
Very informative, especially for a non-computer science guy like myself. Thanks!
@ITkFunde4 жыл бұрын
Thanks Brent that is the essence of this channel - Making I.T. interesting for everyone.
@arunkumarr23022 жыл бұрын
Data ware house is a storage which contains 4 stages namely collect,store, analyse,consume with help of etl . Uses of data warehouse is integrity,time based sir .Etl-> extract transform and load. Data pipeline is a transformation of data from one place to another like as water from ground to people through pipe . Data pipeline is classified with 3 types namely 1)Real time data pipeline 2) Batch data pipeline (for example particular data is required . I need sales history of a store per day )(etl bods is used for batch data pipeline) 3) Log data pipeline (combination of 1+2) sir . Thank you so much 👏 for this session 🤗
@knorth23864 жыл бұрын
Hi Anshul, your video was helpful. I have experience with ETL but didn't know that it was a specific type of data pipeline. Thanks for showing the different type of systems and technologies used for the concept visual that you explained with.
@ITkFunde4 жыл бұрын
Thank you Kyle coming from an experienced guy means a lot. Hoping for continued support !!
@obiradaniel2 жыл бұрын
Thank you very much, very elaborate and concise, this import for everyone in the technical data cycle, data engineer, analyst, administrator and data scientist.
@jamesmcmurtry53514 жыл бұрын
Great visual layout. Would love to see this applied to an ELT model with Snowflake and it's advantages/disadvantages. Possibly a suggestion on ML complementary tools like Looker and Kraken.
@sripathysrinivas4579 Жыл бұрын
Fantastic!!! Thanks for your time and explaining the basics!!!
@ITkFunde Жыл бұрын
My pleasure!
@JibrilLamai3 жыл бұрын
This is a very good explanation and the best I have seen so far in my quest to understand this concept. Thank you very much. Now I can confidently visualize and explain the same concept with ease and a great understanding of it.
@ITkFunde3 жыл бұрын
Thanks Jibril glad it helped 🙏☺️
@essboogy3 жыл бұрын
This is excellent. Really interesting and easy to follow. I am just starting training with IBM to be a Data Engineer. Leaving healthcare for good!
@ITkFunde3 жыл бұрын
Thanks a lot ☺️☺️🙏
@hussamcheema4 жыл бұрын
Excellent Explanation. Keep making more videos regarding Data Engineering, AI, and Data Science.
@ITkFunde4 жыл бұрын
Thanks a lot mate for your feedback and suggestion!!
@MGKA-vr8si2 жыл бұрын
One of the best presentation to know more about data pipeline. thanks.
@FIRE_EVERYTHING Жыл бұрын
Excellent high level overview Anshul, I appreciate that you differentiated between batch data and real time data with the Lambda Architecture as it seems most applicable to modern organizations. Your explanation of dashboards as consumers was also very realistic. Your video helped me better understand the general steps in the process. +1 Subscriber.
@ITkFunde Жыл бұрын
Thanks Matthew for supporting ❤️
@edsonsabino2 жыл бұрын
Great! The part that I liked the most was the one in wich he explained the difference between ETL and data pipeline
@maelherbert3213 жыл бұрын
Really content. Bravo from France 👏👏👏
@ITkFunde3 жыл бұрын
Merci Mael 😊
@NarendraSharmaa2 жыл бұрын
What a Explanation out of world , please share more such videos on topics like Kafka , Streaming
@ITkFunde2 жыл бұрын
Thanks a lot
@sourabhsuri88123 жыл бұрын
Thank you so much brother, for clarifying some of the concepts.. Truly appreciate it. Can you suggest - Which way is the Tech Heading now - Data Warehouse Vs. Data Lake? Are DWH a thing of past?
@ITkFunde3 жыл бұрын
Thanks Sourabh, DWH is here to stay its not going anywhere. Today data world has become enormously huge and there is space for DWH and DL to co exist also Datalake can not solve all business problem. There is a hybrid approach coming up wherein you have your DWH on top of your Datalake
@vivek1joshi2 жыл бұрын
Data Mesh
@ajeet2379011 ай бұрын
Your teaching technique is amazing. Thank you for sharing the knowledge on data pipeline. My all doubts related to data pipeline is clear now.
@mikebrooks41823 жыл бұрын
Thanks for a great overview of how the Lambda architecture can expedite the delivery of data to data consumers. For future videos, it would be helpful to map this to the roles, responsibilities, and skill requirements needed to manage this environment.
@ITkFunde3 жыл бұрын
Thanks Mike for suggestion will try to add this
@haydarissa93712 жыл бұрын
Very elegant way to explain data pipelining and ETL approach. I appreciate the examples given especially the master data management. Well done.
@victorbgdream83284 жыл бұрын
Thanks, very nice and simple concept.
@ITkFunde3 жыл бұрын
Thanks Vladimir
@pallavimondal26554 ай бұрын
I am a newbie to this ETL process, confused with all jargons! This definitely helped to get the picture of it. Keep up the good work
@carlosarte11 Жыл бұрын
Anshul: Thanks a lot for this great video, you not only explained clearly the concepts, but also gave us the name of useful products for doing each step of the process. Thank you very much.
@APUSHstudent7772 жыл бұрын
I am prepping for an interview and preparing how to talk about this topic. You explain this very simple and easy to follow. Thank you.
@damiiete3 жыл бұрын
Great explanation for introduction to data pipelines. Thanks for clarifying the distinction between ETL and data Pipelines.
@sunderdase3511 Жыл бұрын
A simple and superb explanation about Data pipeline structure. Thanks a lot. Really appreciate!
@emmanuelafuwape91182 жыл бұрын
this was such a well detailed explanation of Datapipeline and more. I am so elighted!! Structured so well Thank you!
@alagurajastp2 жыл бұрын
Thanks for giving Basic understanding
@asthagoel30002 жыл бұрын
Big concepts explained very quickly in an easy to understand manner. Thanks!
@smitadash81132 жыл бұрын
Very crisp and clear explanation of data pipeline. Thank you very much for explaining in detail. Much helpful.
@ITkFunde2 жыл бұрын
Thanks Smita
@alaad10092 жыл бұрын
Excellent explanation 👌 one of the best I've seen on the subject!
@joshuaabok33292 жыл бұрын
Amazing analogy. Amazing explanation of data pipeline. This is just awesome.
@AbelAkeni2 жыл бұрын
Succinct, presented with clarity! Beginners, get in here! 👏🏾👏🏾👏🏾
@GonzaloArangoF2 жыл бұрын
It is a clear presentation for common people. Tanks!!
@alessandroceccarelli68892 жыл бұрын
Thank you for your high-quality videos! In our use case, we ingest daily a .zip file containing 3 .csv’s related to sales, inventory and orders from different shops (20-30) and CRMs (4-5 ; each one with its own naming convention, dtypes, …). How would you improve the following pipeline? - Raw zip files are uploaded to a GCP bucket - The upload triggers a Python GCP Cloud function that transforms the data to create single naming/dtypes conventions and brief new columns (e.g. timestamp by merging date + time) - Transformed data is uploaded to MongoDB - 3 separate collection for sales, inventory and orders - and raw .csv’s to a separate GCP bucket as parquet files (1 folder for each CRM and PoS as subfolder) - A PubSub message posted by the function triggers a GCP Function that loads processed data from MongoDB, applies ML models and stores results in separate collections (1 for each analysis type; e.g. forecast, anomaly detection, …) - A Python web app directly reads ML output data from MongoDB Thank you so much and love your videos; 🤗
@erengulbayram3 жыл бұрын
Great explanation! Thank you
@ITkFunde3 жыл бұрын
😊 thxxxx
@jasper50162 жыл бұрын
Thanks a lot. This tutorial taught so many things within 10 mins.
@formulaRoot2 жыл бұрын
Beautiful! Thanks for this!
@elifylmaz7940 Жыл бұрын
Wov, I think I just watched one of the best explanation video in my life. You did an amazing job! The structure you explain the details and use cases, the examples you give in real world applications made a lot of sense to me. Thank you so much!
@ITkFunde Жыл бұрын
Thanks Elif for your kind words means a lot ☺️🙏
@rangagullapalli12103 жыл бұрын
Wonderful Explanation and you really hit the point straight and clear about data pipe lines in a short and precise manner. ThanQ very much.
@ITkFunde3 жыл бұрын
Thanks 🙏☺️
@nikolaysokolov90272 жыл бұрын
It's excellent explanation. Thanks!
@vani.bhuvanagiri67166 ай бұрын
Very Informative one !! 👌 Appreciate your wide experience !!
@amitparmar8076 Жыл бұрын
What a superb explanation with simplistic examples and scenario.
@francis1912 жыл бұрын
Clear simple and easy to understand - great presentation
@Aditya-zv5et5 ай бұрын
really a great video for someone who is trying to understand data pipeline
@hasinirajapaksha3332 ай бұрын
in my life this is the best explanation I ever heard ,PERFECT .keep doing that good luck sir.🙏
@satishkumar-t9z9f Жыл бұрын
Excellent Video. In simple Diagram explained very neatly about Batch and Realtime pipeline along with Data Pipeline architecture. Kudos!!
@vansf3433 Жыл бұрын
The benefit of pipelining is the ability to put all 5 stages, 1. Fetch, 2. Decode, 3. Execute, 4 Read memory, 5. Write memory , to work, simultaneously operating on independent commands. The max-benefit come when the pipeline is full You can measure the pipeline performance by calculating the cycles per instruction CPI
@rajguru19984 жыл бұрын
Finally understood the pipeline in 10 mints... thank u
@issamfakhari31524 жыл бұрын
Great explication!!!!
@dhansraj73453 жыл бұрын
Very nice architecture in a simple hand drawn picture and presentation also. Awesome job
@kiransatyan2 жыл бұрын
So much valuable content in such short duration video... with so much clarity. Awesome !! Thank you !!
@ssbsathish2 жыл бұрын
Awesome thanks for sharing your interest
@ITkFunde2 жыл бұрын
Thanks Sathish
@darinacherepanova69302 жыл бұрын
It’s eyes opening and matching pieces in my head into logic, really thankful !
@luisjimenez9173 жыл бұрын
Excelent!! Thanks...!! Congratulations!!!
@ITkFunde3 жыл бұрын
Thanks Luis ☺️☺️
@shivesh28132 жыл бұрын
really insightful and helpful channel for learning IT fundamentals
@azobensadio260 Жыл бұрын
Your video helped me to understand better the steps in the process. i love too much the way you explane the process. Thanks Master!
@DudeGuyWho Жыл бұрын
This is an exceptional piece of instruction...connects flows with products and varied use cases/application options.
@redshift36392 жыл бұрын
Very useful video. Thank you
@ankesh2513 жыл бұрын
Best Video about Data Pipeline. haven't thought its this simple
@ITkFunde3 жыл бұрын
Thanks Ankesh 🙏☺️
@sulaimankhan80332 жыл бұрын
Watched it again & again for clarity - Good !!
@ITkFunde2 жыл бұрын
Thanks ♥️♥️
@sabysreya3 жыл бұрын
Simple and super easy to understand 👌👍👏👏
@ITkFunde3 жыл бұрын
Thanks again
@DanishAnsari-hw7so3 жыл бұрын
Such an awesome explanation, short, crisp and to the point. Great!
@ryanhutchins26342 жыл бұрын
Great introductory video. Thanks for sharing your knowledge.