"Guys?! How many ways can I arrange half of this apple?!" "Oh that's easy √π/2 ways" "Wut" "Wut"
@martingaggero84626 жыл бұрын
"Oh, that makes sense, bro."
@NeerajSingh-or9hd6 жыл бұрын
easy question
@RazorM976 жыл бұрын
i don't get it
@bizzybuzz21986 жыл бұрын
@@RazorM97 a number of ways you can arrange N objects is N!.
@RazorM976 жыл бұрын
@@bizzybuzz2198 so true, but i think that's more well limited, factorials are limited, idk why.. it's my opinion. thank you tough
@ffggddss6 жыл бұрын
IMO, a nicer/prettier/cooler result is (-½)! = ∏(-½) = Γ(½) = √π Regardless, thanks for another fun math excursion!
@blackpenredpen6 жыл бұрын
ffggddss I actually did that too!! We do think alike!
@Barteks2x5 жыл бұрын
One is an obvious result of the other: √π / 2 = (-1/2 + 1)*√π
@EngSeifHabashy3 жыл бұрын
Well that's nice but it should be sqrt( PI) /2
@sttlok3 жыл бұрын
@@EngSeifHabashy no, it's the gamma of a half, not a half factorial.
@mangalvnam20106 жыл бұрын
So, that's technically a FRACTORIAL, right? lol
@blackpenredpen6 жыл бұрын
YES!!!!
@arnavanand80375 жыл бұрын
Fractoreo
@bamberghh16914 жыл бұрын
@@arnavanand8037 factorio?
@happypiano48104 жыл бұрын
Nice.
@pepebriguglio61254 жыл бұрын
Nah ... more like a fictorial 😛
@machobunny16 жыл бұрын
Been a long time since I was taught most of this stuff, but never by a teacher who could pull together so many facts to make the job so much easier. Students are lucky today...can watch it over and over, and practice with the tutor right in front of you all day.
@guitarraccoon15416 жыл бұрын
You're like the Bob Ross of math.
@bonbonpony6 жыл бұрын
Except with less of happy little accidents ;)
@MisterPenguin423 жыл бұрын
"Happy little decision trees"
@MrArtbyart3 жыл бұрын
Bob Ross was a glorified less than mediocre artist.
@smvwees2 жыл бұрын
That honour goes to Tibees, though combine it with the intellect of Blackpenredpen.
@zachansen829310 ай бұрын
@@MrArtbyart You're confused if you think it was his paintings that were his art.
@ramez27756 жыл бұрын
Someone has been eating too many factOREOS.
@rasmussuonio30146 жыл бұрын
Fact Oreos So funny
@jackdulin82426 жыл бұрын
If watching one of your videos means eating one factOREO, then I would be as fat as a house.
@Xnoob5453 жыл бұрын
facthydrox
@jyl123 Жыл бұрын
ur actually so funny mr. integration bee winner
@Mohamed-Taha-Lakhnig2 жыл бұрын
I study in morocco And my teacher told us to search about it . This video is awesome . I watched before 3 ones but I didn't understood . Now It's more clear for me Thank You
@MG-hi9sh5 жыл бұрын
Wow, this was very informative and interesting. I love the depth and variety of the topics covered on this channel. Good work man. You are doing a very good job.
@wanyinleung9126 жыл бұрын
3:46 You will also be infinity
@convergentradius4 жыл бұрын
Thanks for boosting my confidence.
@hamster87064 жыл бұрын
Thanks
@NBx035 жыл бұрын
"Is it t^2?" *"no u"*
@radiotv6246 жыл бұрын
Very interesting, I love videos that broaden somewhat narrow definitions. I’ll keep this one in my back pocket!
@avtaras6 жыл бұрын
Much better than most tutorials. Thanks for being clear!
@AlejandroGomez-yx1sg4 жыл бұрын
Beautiful! Congrants and thanks for all your teaching efforts. Greetings from Colombia 🇨🇴
@MartinPuskin6 жыл бұрын
I would love if you showed how to find the local minimum of the pi function (between 0 and 1)
@sbok9481 Жыл бұрын
From calculus we have learned that at a minimum point (or maximum), the gradient=0. In other words, the first derivative is 0. So go ahead and take the derivative of the pi function and put that = 0. Solve for x, then you will get it.
@Jacob-uy8ox6 жыл бұрын
One of your best videos! Also de Pi function and the Gamma function!!!
@mathonthego19476 жыл бұрын
I'm new to this channel, and I'm pretty much hooked after seeing 3 videos.
@blackpenredpen6 жыл бұрын
Math On The Go thank you so much!
@brandongammon69786 жыл бұрын
Bro u got some fire clothes
@blackpenredpen6 жыл бұрын
Thanks
@brandongammon69786 жыл бұрын
@@blackpenredpen very smooth, keep doin u
@gongasvf6 жыл бұрын
I just remembered what love feels like
@blackpenredpen6 жыл бұрын
Gonçalo Ferreira yay!!!
@spiritgoldmember75286 жыл бұрын
Can the Pi function take negative values for x?
@blackpenredpen6 жыл бұрын
Yes, (-1/2)! is sqrt(pi)
@materiasacra6 жыл бұрын
The integral representation shown in the video is well-defined for x > -1. Below x = -1 the integral no longer converges at the lower bound t=0. It is possible to extend the definition of Pi(x) by analytic continuation. This yields a unique value everywhere in the complex plane, _except at the negative integers_ . So Pi(-3/2) exists, and comes out as -2 sqrt(pi).
@materiasacra6 жыл бұрын
@densch123: But it will diverge at t=0.
@wurttmapper22006 жыл бұрын
Not negative integers
@jimallysonnevado39736 жыл бұрын
yes except for negative integer
@muhammadmubbushirhussain47344 жыл бұрын
I really like your videos U made my calculus easier LOVE FROM PAKISTAN 🇵🇰
@fantiscious2 жыл бұрын
4:12 BPRP: "2udu" My brain: "To you the you"
@Asdun774 жыл бұрын
you did a great explanation allah bless you
@potatopassingby6 жыл бұрын
what if we put a complex number in the Π function?
@MattMcIrvin6 жыл бұрын
It's defined on the whole complex plane, except for the negative integers. Usually what you see plotted is Gamma(z), which is Pi(z-1): en.wikipedia.org/wiki/Gamma_function#/media/File:Gamma1.png en.wikipedia.org/wiki/Gamma_function#/media/File:GammaAbsSmallPlot.svg
@sasidharankarthikeyan37985 жыл бұрын
It has been 10 years since I derived this equation in my graduation. Feeling nostalgic.
@gusthomas68726 жыл бұрын
Are we allowed to call you 老师?
@blackpenredpen6 жыл бұрын
Gus Thomas I am one already. So yea!
@gusthomas68726 жыл бұрын
blackpenredpen 谢谢老师!
@AlgyCuber6 жыл бұрын
are you a math teacher?
@XdarkmutantX16 жыл бұрын
laoshi
@blackpenredpen6 жыл бұрын
Statiscube It means " teacher "
@uumlau5 жыл бұрын
This reminds me of the whole 1+2+3+4+...=-1/12 bit. Why? Because "factorial" has a specific meaning (N! = N*(N-1)*(N-2)*...*1) that doesn't apply for non-integers. So the question of "(1/2)! is equal to what?" is a meaningless question, just as "What is the sum of all positive integers?" is a meaningless question. In both cases, something subtle is going on: the question being asked has slightly changed! In the (1/2)! case, the question has become "How would factorials work for fractions, while remaining self-consistent?". In the sum of all positive integers, the question has become, "My math has me adding all positive integers, but I know my final answer is finite? How can we self-consistently evaluate this to get a finite result?" Without the subtle change in the question being asked, the results don't make sense. (1/2)! isn't the combinatorial result of anything. And -1/12 isn't the SUM of all positive integers. In both cases, the math is being extended to handle "what if?" scenarios that in turn help us solve problems quite different from the contexts of the original questions.
@mandeltownthekillerfrombab52022 жыл бұрын
it's a "Numeral Theorem Superstition"
@DasZeppeli5 жыл бұрын
Things like that are why I love maths ❤
@LudwigvanBeethoven23 жыл бұрын
If (1/2)! = sqrt(Pi)/2 Then any real number with 0.5 as fraction will have PI in it's factorial. Thats cool
@rj-nj3uk6 жыл бұрын
I am making notes of whatever you teach for my semester exam.
@DjVortex-w6 жыл бұрын
Why do pi and e appear everywhere?
@blackpenredpen6 жыл бұрын
WarpRulez that's why they are famous!!
@georgepennington9086 жыл бұрын
Because they’re magical numbers
@terracottapie6 жыл бұрын
But 0, 1 and 2 are labels we assign to very common core concepts that really do appear everywhere. Pi isn't the same as 0, 1 and 2. It's a crazy, esoteric, infinite non-repeating decimal. It's a name we give to the ratio between the circumference of a circle and its diameter, and yet it appears in all sorts of stuff unrelated to circles. It's pretty interesting.
@terracottapie6 жыл бұрын
Except that one and two are easy things to conceptualize, for anyone over the age of 3, and "pi" is an abstraction that only makes sense to most people in the context of circles. So for pi to appear in random other places is fascinating to people including mathematicians. There is a cottage industry of mathematicians giving talks about how cool it is that pi appears in infinite series and physics and electromagnetism and 100 other things. Carl Sagan wrote a book where aliens solved pi to enough places that they eventually got to a coded message from God, to play off this fascination. So this isn't a concept that just appeared today in a KZbin comment.
@bonbonpony6 жыл бұрын
+WarpRulez: `π` appears in many places where circles and cycles are involved, and this is pretty much everywhere in Physics, because matter has wave-like nature and its behaviour repeats periodically (that is, it "goes in circles"). And `e` appears everywhere because it is the "natural rate of growth" - the one in which something grows continuously, and the rate of that growth is equal to the current value of the function. This is also a very common scenario in Physics, because things tend to grow proportionally to the current amount of stuff. E.g. heat flows out the faster the more hot something is. Radioactive atoms decay faster the more atoms are there, because the number of interactions between them is greater. Same goes with economy where the more money you invested, the more interest you get each month. Also note that `π` and `e` are actually related - they're like two different ways of looking at the same thing, or two complementary mechanisms. Because you can think of turning in circles as exponentiation (which gets more obvious once you learn about complex numbers and their powers). So if `π` measures the length of the cycle (actually, a half-cycle; look up "tau" ;) ), then `e` measures the rate of change that makes this twisting possible.
@beatriceleeknowles59446 жыл бұрын
Sad that you didn't do the gaussian integral from first principles. It's a really nice proof which doesn't take very long and makes it clear where the square root comes from.
@benarcher3723 жыл бұрын
I wonder what the graph looks like; pi(n); 0
@JUGNUMEHROTRANEETASPIRANT10 күн бұрын
You could have just sad that n!=Gamma{n+1}=nGamma{n} & Gamma{1/2}=√π. {GAUSSIAN INTEGRAL} & THEREFORE : [0.5]!=√π/2 ~ 0.886
@raiturner21324 жыл бұрын
My mans got style!!
@banderfargoyl6 жыл бұрын
It's just a semantic issue I know, but saying the Pi function generalizes the factorial to non integer values seems a little different from saying the factorial itself can be applied to fractions.
@bonbonpony6 жыл бұрын
Probably. But we could say the same about exponents in general: Originally they were defined only for positive integers. But (thankfully) the definition has been extended to zeroth exponent, negative exponents, fractional exponents, real exponents, and even complex exponents along the way. It wouldn't be so convenient if we had to use all sorts of different "special functions" to do exponentiation with whatever other than the natural numbers, would it? :q So I think the same should be applied to factorials: once they've been generalized, I see no point in using some fancy "special functions" to calculate the (generalized) factorial of `1/2`.
@angelmendez-rivera3516 жыл бұрын
Bon Bon Bingo.
@b43xoit6 жыл бұрын
Wolfram Alpha gives .9 -> .962, .8 -> .931, .7 -> .909, .6 -> .894, .5 -> .886, .4 -> .887 . So maybe the minimum is found close to .5 as the input. .51 -> .886592; .50 -> .886227; .49 -> .885945 so the minimum occurs below 1/2 somewhere, but above zero. .40 -> .887264 so there is at least a local minimum somewhere between .4 and .5
@purushotamgarg84536 жыл бұрын
At 0:13 "Whole No." are basically POSITIVE except 0. But We can do 0! in the usual way so you should just say "Whole No.".....
@omp1996 жыл бұрын
No, because there are also negative whole numbers. He should say "non-negative whole numbers", "non-negative integers", or "natural numbers", taking the set of natural numbers as {0, 1, 2, 3, ...}.
@avibents12536 жыл бұрын
does it work only for half or does it work for any 0
@Pinjesz6 жыл бұрын
Could you make a video about one fourth factorial?
@joshuamitchell55306 жыл бұрын
Rocking that supreme jacket love that.
@michaeldang81894 жыл бұрын
It would be nice to quickly go over the x-y graph of y=x!, where 0
@mandeltownthekillerfrombab52022 жыл бұрын
thank U so much to learn it. (I often get false result with the integral 0 to infinity)
@ptitemoi Жыл бұрын
Hello! Could you please do the same for some other numbers? Like 1/3, 1/5, 1/7 etc. Thank you in advance!
@eduardgiovannyariasrincon66356 жыл бұрын
If both of the functions lead you to the answer, what would be the real difference between them?
@UnOrdelyConduct6 жыл бұрын
Is there any correlation to the pi/gamma function and the laplace transform? By inspection i see that the integrals are pretty similar
@ryzeap58366 жыл бұрын
When you haven't seen integrals but you love this
@gian2kk6 жыл бұрын
8:03 editing wizardry
@sodik03055 жыл бұрын
I very like this 😁😁😁
@PedroXpertGames4 жыл бұрын
You could also do integrations by part firtst and then use U-sub
@Beeboysquared6 жыл бұрын
That flex jacket tho
@aweebthatlovesmath42202 жыл бұрын
I love factorials!!!
@hardikkadd51142 жыл бұрын
If we find -1! By this then does it shows t > 0, t < 0 so t € (-∞,∞)- {0} Which says that -1! = -πi 1/0 = -πi
@aweebthatlovesmath42202 жыл бұрын
Lol
@lakshsinghal95704 жыл бұрын
wooahhh!!! I understood nothing, 'cause I have to first study the pi and gamma function but it still is AMAZING..!!!
@natehoffmaster67266 жыл бұрын
5:31-5:36 is why I prefer differentiation over integration. Too much guessing in integration.
@paulg4444 жыл бұрын
great video, maybe a slow review of integration by parts.
@Tcrrxzz11 ай бұрын
Please @blackpenredpen teach me the basics of integrals? I have never learnt what are they
@Pokemon001586 жыл бұрын
I love how this guy always pins the racist comments about his pronounciation lol
@015Fede6 жыл бұрын
Yolo Swaggins they're not racist. It's an internal meme
@mike4ty46 жыл бұрын
That keeps those racists shamed as they should be.
@angelmendez-rivera3516 жыл бұрын
Federico Aguilera It is racist, it is not a meme for most people.
@AngelRivera-mc8zc6 жыл бұрын
Angel Mendez-Rivera hey me
@JanKowalski-zz8ef6 жыл бұрын
*racism intensifies*
@francesco52013 жыл бұрын
you can use strirling aproximation
@userBBB5 жыл бұрын
√π/2≈0.88622692545 0.88622692545 way to arrange 0.5 thing and you have 1 way to arrange 0 or 1 thing makes a lot of sense now...
@GottfriedLeibnizYT6 жыл бұрын
Fascinating! But can we intuitively make a sense out of this result?
@jeremymoss72345 жыл бұрын
This is a funny looking ood, but he sure is good at math
@josuehazaelmurodiaz77366 жыл бұрын
Hey blackpenredpen, Is possible to calculate Π(a/b)? To calculate any factorial cocient. Hello from Zacatecas México
@sergioh55156 жыл бұрын
josue hazael muro diaz very good question. I'm sure it is
@josuehazaelmurodiaz77366 жыл бұрын
It's pretty much the same, you end up with : ∞ ∫ e^(u^(b/a)) du 0 And then, I have no idea jaja
@materiasacra6 жыл бұрын
You may want to check that u-substitution... Even when corrected, it leads nowhere interesting. The Pi and Gamma functions are easy to compute only for integer and half-integer arguments. en.wikipedia.org/wiki/Particular_values_of_the_gamma_function For other values we turn to numerical methods.
@KalikiDoom6 жыл бұрын
0:56 "for the Gamma function fans out there": Thank you for noticing the Gamma function fans!
@jamesmorrison79895 жыл бұрын
If pi is in the answer a circle is involved somewhere. Im sure the complex plane but it would be cool to figure out exactly how its in play here.
@michaelbaum6796 Жыл бұрын
Great explanation as always - thanks👍
@andyct19826 жыл бұрын
What is the minimum value of the function Gamma defined on the positive real axis?
@carultch Жыл бұрын
There is no answer in terms of elementary functions and constants. The minimum occurs at x=1.461632145, with a corresponding Gamma(x) = 0.885603194.
@tetris4503 жыл бұрын
This guy is smart
@mobius2827 Жыл бұрын
boy got on supreme
@davidrheault78966 жыл бұрын
I would say GAMMA function is more popular because it came first historically (Daniel Bernoulli conjectured, Euler solved, 1720's), while the PI function came from Gauss (1830's ?), but Gauss modified Euler's product to give a complex-valued function Gauss forged monstrous theorem without giving proofs but they worked, I am referring here to GAMMA (1/3) which is transcendental (proven by Chudnovsky in 1984). Gauss computed it through hypergeometric series I have a preference for (-1/2)! =GAMMA(1/2)= sqrt(pi) = Euler's mirror with z = 1/2
@paulfaigl83295 жыл бұрын
Very cool guy + cool maths!
@mike4ty46 жыл бұрын
A remark: Gamma(1/3), Gamma(1/4), etc. - which one might be naturally inclined to consider after seeing this - do not seem to have a simple representation in more elementary terms. They just have to be taken as they are. However, there is no proof that they cannot be so represented. The theory of how to prove what does and does not have a certain kind of representation is something very interesting and it would be fun to see at least a bit of video on it (e.g. Galois Theory and the inexpressibility of the solution of a quintic or higher by radical operations in the general case, which actually appears to imply a bit further that it is also not expressible with any elementary operations at all including exp, log, and trig (the last comes from the first in the complex plane so may be a bit redundant to mention.).).
@akinextreme81362 жыл бұрын
Plplplplplplpllpl
@brendonreidvictor34916 жыл бұрын
I love the video as I have always wanted to learn more about the pi function but I am wondering if it is possible to differentiate the pi function n find some stationary points?
@angelmendez-rivera3516 жыл бұрын
Brendon Victor You can differentiate Π(χ) for integer arguments and obtain a closed-form formula.
@MatthewBaileyBeAfraid4 жыл бұрын
I love your videos (pity that I don’t play the "Like" game on KZbin ... or FB, or Twitter). But I did subscribe.
@Theagchm5 жыл бұрын
What(5.07)?! To integrate the u^2, use integration by parts twice! You do maths by guess and check at a high level?....and even after all that you still had to do a sub! What did you gain by NOT doing integration by parts twice - it is really straight forward.
@BillSmithPerson4 жыл бұрын
That crazy pi again
@Qermaq3 жыл бұрын
So I guess Π vs Γ is kinda like π vs τ.
@ishaan16 жыл бұрын
Can you please do a video on the Wallis Fomula? For the integration of powers of sine and cosine in product. The one which has use of Gamma function or Pi function?
@Harlequin3141596 жыл бұрын
Question: I was trying to find the min of the Pi function between Pi(0) and Pi(1). At first I assumed the min would occur at Pi(1/2) but was surprised to find that I think I have convinced myself the min is at Pi(1/(pi-1)). Or 1 divided by 2.14159... Neat but I am not sure I proved it fully... Any thoughts?
@materiasacra6 жыл бұрын
How did you arrive at 1/(pi-1)=0.46694...? It is quite close to the actual value 0.46163214496836..., but off by a percent. As far as I know there is no closed form expression for this number. I guess you have made some sort of approximation?
@Harlequin3141596 жыл бұрын
Yeah looking back i just made a bad error and it ended up being really close. I basically started with the observation that gamma(1/2)^2 was pi, and that Pi(n) = Gamma(n+1). And then I got sloppy...
@Taterzz6 жыл бұрын
"u in red and u in black" he said it! roll credits!
@mihaiciorobitca52876 жыл бұрын
make an other vid about gaussian integral,right ?
@blackpenredpen6 жыл бұрын
They are in the description box.
@mihaiciorobitca52876 жыл бұрын
blackpenredpen yeh,from bprp to dr. peyam's show
@arnavanand80375 жыл бұрын
@@blackpenredpen the video is private now?
@Craznar6 жыл бұрын
Programmer : 3!=10, Maths : 3!=6
@kuhlde13376 жыл бұрын
I don't get it.
@reetasingh16796 жыл бұрын
Justin Johnson != is the 'not equal to' symbol used in programming languages
@kuhlde13376 жыл бұрын
I see. Then 3!=6 would still be true for programmers as well.
@Craznar6 жыл бұрын
Indeed... :)
@回归常识-u1e6 жыл бұрын
programer:3!=6 math:3!=6
@copperfield426 жыл бұрын
mmm and how can I make a graphic of this thing? I have to solve infinitely many integral?
@danielvidal71634 жыл бұрын
Integer factorials like 5! for example can be written as 5x4x3x2x1 so how would you write 1/2! in the same form?
@marble17 Жыл бұрын
Elementary school guy here
@the1exnay6 жыл бұрын
I didn't understand the vast majority of what you did, i guess i need to brush up on my calculus
@wenhanzhou58266 жыл бұрын
It went wild quite fast...
@ixian983 жыл бұрын
is the Gaussian Integral video not available any more? :(
@Billy_986 жыл бұрын
Awesome!
@blackpenredpen6 жыл бұрын
Kaneki Ken thank you!!!
@b43xoit6 жыл бұрын
I told Wolfram Alpha, "plot definite integral from 0 to infinity of t^x e^(-t) dt, x=0 to 1". But it didn't produce a plot, only a curve length.
@MultiJoan096 жыл бұрын
soooo cool! been wondering a while if there was a continuos function for n! btw how can you know π is continuous?
@darkangel23474 ай бұрын
The factorial function has it only positive local minimum of X=0.461632145…. with its factorial being 0.885603… which is not far from (0.5)!
@paulthompson96686 жыл бұрын
Can you do a video on fractional derivatives?
@sophieward72256 жыл бұрын
Could you make a video evaluating gamma of i? I've been trying to figure it out all day, and I can't!
@Rtong986 жыл бұрын
Wow! I’ve never seen u * u * e^-u^2 being used before! Thank you
@MrLuizSinho6 жыл бұрын
Could you do a fractional calculus video? Pleaseeeee.
@blackpenredpen6 жыл бұрын
MrLuizSinho Peyam did already. Check it out!
@joluju23755 жыл бұрын
Please, teach us how to derivate Pi, and find where the minimum is !
@fizixx6 жыл бұрын
Would you do the "brachistohrone" problem where the minimal distance is between 2 points under the influence of gravity?
@sirzatsayn8136 жыл бұрын
If I am not wrong, factorial is for whole numbers and appears in combination formulas. What is the meaning of this?
@kkn55236 жыл бұрын
I suppose this just shows that factorials make sense only when dealing with positive integers and 0 and why we don't extend it's domain. Still, I may be wrong
@sirzatsayn8136 жыл бұрын
Factorial operator, by definition is the multiplication of integers only. There are infinite amount of floating point numbers including irrational ones between two integers. Multiplication of these numbers converges to 0 between 0 and 1, diverges to infinity after 1. So I am confused. Who needs the factorial of 63.748 for example? I am not a mathematician by the way.