Which definition of derivative is easier?

  Рет қаралды 13,465

bprp calculus basics

bprp calculus basics

Күн бұрын

Пікірлер: 46
@bprpcalculusbasics
@bprpcalculusbasics 2 жыл бұрын
Try the algebra tiebreaker problems from Stanford math tournament 👉kzbin.info/www/bejne/n160aGerlNmDftE
@createyourownfuture5410
@createyourownfuture5410 2 жыл бұрын
They were very fun indeed!
@SeeTv.
@SeeTv. 2 жыл бұрын
b is easier since in order to cancel with the denominator you just have to factor out a single h which isn't really hard, but in a) you have to factor out a difference which is harder. b) is just algebra autopilot
@randomjin9392
@randomjin9392 2 жыл бұрын
I use them both depending on the need. Ex: solving functional eq. Given a differentiable f s.t. f(x+y)=f(x)f(y) you can use the second definition to get that f' = Cf which is a separable DE. But if functional eq. has some sort of a sum or a difference in it - then the first definition is better.
@Ou_dembele
@Ou_dembele 2 жыл бұрын
Option b is the best one other than power rule
@animator2.090
@animator2.090 4 ай бұрын
a) is easier acc to me..reason is that it feels quite simple to take factors rather than expand
@twelfthdoc
@twelfthdoc 2 жыл бұрын
So used to seeing the 2nd definition of derivative from FTC that I forgot about the first one! Haven't seen it for a while. I can see advantages for both (h always approaching 0+, while x always approaching a)
@nvapisces7011
@nvapisces7011 2 жыл бұрын
Blackpenredpen made substitutions and integration by parts really fun for me and easy when i learn them in school
@bjornfeuerbacher5514
@bjornfeuerbacher5514 Жыл бұрын
I much prefer method 2. Not only is expanding usually easier than factoring (as you said, in method 1 you sometimes even need long division), but also it makes finding the derivative of sin(x), cos(x) and exp(x) easier, it is easier to prove the product rule and the chain rule using that method, and it is easier to write down linear approximations (tangents), which you both need for deriving Newton's method for finding roots and l'Hospital's rule.
@fibroidss1194
@fibroidss1194 3 ай бұрын
I prefer option b just for clarity reasons, because the increment h on which the whole idea of derivative is based is actually clear immediately. Although sometimes I might just substitute h with x-a and then solve the limit since the first and the second option are simply related by a sub
@evanbarkman5786
@evanbarkman5786 2 жыл бұрын
I tend to prefer the h->0 version, I have a lot more experience with that one, and at least for polynomials, expanding is easier than factoring, but I know there are times when the x->a version is better.
@CaffeineOverFlow_0720
@CaffeineOverFlow_0720 2 жыл бұрын
Thank you very much for making these kinds of videos.
@kepler4192
@kepler4192 2 жыл бұрын
I actually like both, they both have their own implications
@plus-sign
@plus-sign 2 жыл бұрын
Preference: Proofing the power rule using implicit differentiation. ( *or method 2* ) Before that, we'll proof the derivative of ln x using the second definition of the first principle mentioned. Then there is no need to do that awful binomial expansion. Or just recall that all terms with degrees greater than h^2 would be insignificant, and thus we could just ignore those terms in each binomial and do not expand them fully. (by using the second definition of the first principle mentioned) (a+h)^99 = a^99 + (99C1) a^98 h + (insignificant terms containing h of degree 2 or above) = a^99 + 99 a^98 h ((a+h)^99-a^99)/h = (99 a^98 h + insignificant terms)/h = 99 a^98 + insignificant terms that contains h. P.S. if you would like a more formal and mathematical formulation, then just keep all insignificant terms in an summation of binomial expansion under the summation notation. Calculating their exact coefficients is just not necessary.
@pneumon_koji
@pneumon_koji 2 жыл бұрын
Although I have just started learning calculus I prefer the 2nd method because it just works better for me. Thanks for these vids bprp!
@tambuwalmathsclass
@tambuwalmathsclass 2 жыл бұрын
In fact all are nice
@TheLazyEconomist
@TheLazyEconomist 2 жыл бұрын
I didn't even know about the pascals triangle thing. I hate the definition more than anything else in calculus. The easier of the two depends less on the need and more on your ability to factor versus multiply.
@herbie_the_hillbillie_goat
@herbie_the_hillbillie_goat 2 жыл бұрын
There is a really easy shortcut to expand binomials as you write them out. Say you need to expand (A+B)^7. Start with A^7+7(A^6)(B^1). Then the cooeficient for the next term will be the coefficient of the most recent term (7) times the exponent on A (6) divided by ONE MORE than the exponent on B (1). So we have 7 * 6 / (1+1) = 21 and the expansion so far is A^7+7(A^6)B+21(A^5)(B^2). Just do the same thing to find the coeefentient of the next term. 21*5/(2+1). In this case 21/3=7 and 7*5=35 so we have A^7+(7A^6)B+21(A^5)(B^2)+35(A^4)(B^3). At this point we can simply mirror the rest yielding: A^7 + 7(A^6)B + 21(A^5)(B^2) + 35(A^4)(B^3) + 35(A^3)(B^4) + 21(A^2)(B^5) + 7A(B^6) + B^7. Hopefully this makes sense.
@heliocentric1756
@heliocentric1756 2 жыл бұрын
Why lim_h>0: [f(a+h)-f(a-h)]/(2h) is not used more frequently as a definition of "derivative", even if the function has a removable discontinuity at a?
@carloscervinoluridiana7832
@carloscervinoluridiana7832 2 жыл бұрын
I think it's because in order to build a good differentiation theory, everybody agrees that differentiability must imply continuity, so I guess that's why
@86dash
@86dash 2 жыл бұрын
I don't know or study anything about calculus, but I love videos
@1chillehotdogpro199
@1chillehotdogpro199 2 жыл бұрын
Can you find the derivative of e^x with the first definition?
@chrisglosser7318
@chrisglosser7318 2 жыл бұрын
Yes - but your def of the natural log changes
@Jawok2010
@Jawok2010 9 ай бұрын
I would prefer version b)
@ChimezieFredAnaekwe
@ChimezieFredAnaekwe Жыл бұрын
You dont know how much I love the AH 😂
@TonyQuangHuy
@TonyQuangHuy 2 жыл бұрын
i love calculus
@عزيزالحجي-ن5ل
@عزيزالحجي-ن5ل 2 жыл бұрын
Although I am more familiar with b i like a more
@TonyQuangHuy
@TonyQuangHuy 2 жыл бұрын
i'm your fan
@stephenbeck7222
@stephenbeck7222 2 жыл бұрын
Neither one, of course as a calculus student who already learned derivatives I would say…. The epsilon-delta definition of either limit
@emildinzey8483
@emildinzey8483 2 жыл бұрын
In my opinion, both are the same, but the left form it's easier than the right form, why? The first one always is factorization (although both have this, however, it's "easy" to find out in this form). On another side, if we have a polynomial equation of 3rd or 4th grade, and evaluate at f(x+h) it's a little bit complicated to work with that, therefore, in my opinion (again) the first one is easier.
@bjornfeuerbacher5514
@bjornfeuerbacher5514 Жыл бұрын
"it's "easy" to find out in this form" Most of my students would beg to differ. ;)
@ChimezieFredAnaekwe
@ChimezieFredAnaekwe Жыл бұрын
I promise you. Your opinion counts.
@pneujai
@pneujai 2 жыл бұрын
i always use the second one
@lamarnash2439
@lamarnash2439 Жыл бұрын
prefer part b. I cannot explain why?
@TonyQuangHuy
@TonyQuangHuy 2 жыл бұрын
i luv maths
@nicolasguguen5918
@nicolasguguen5918 3 ай бұрын
a. is easier to calculate 0/0 limits
@viktoreidrien7110
@viktoreidrien7110 2 жыл бұрын
Part b
@herbie_the_hillbillie_goat
@herbie_the_hillbillie_goat 2 жыл бұрын
You didn't compare central differentiation. :)
@TonyQuangHuy
@TonyQuangHuy 2 жыл бұрын
hello
@valentinpalade1297
@valentinpalade1297 2 жыл бұрын
a
@BnSadiq1
@BnSadiq1 2 жыл бұрын
I'ma B boy !
@wiellnyan
@wiellnyan 2 жыл бұрын
“Innocent 2”
@bamdadtorabi2924
@bamdadtorabi2924 2 жыл бұрын
I disagree. The first one you used a difference of cubes to factorise, and you couldve done the same with the second one. If you do that then honestly theres not much difference
@blackpker124
@blackpker124 2 жыл бұрын
I’m a B kind of guy
@lily_littleangel
@lily_littleangel 3 ай бұрын
They're the same methods.
Just take the derivative! (Great calculus 1 derivative practice)
29:40
bprp calculus basics
Рет қаралды 7 М.
It’s all not real
00:15
V.A. show / Магика
Рет қаралды 20 МЛН
When you have a very capricious child 😂😘👍
00:16
Like Asiya
Рет қаралды 18 МЛН
Sigma Kid Mistake #funny #sigma
00:17
CRAZY GREAPA
Рет қаралды 30 МЛН
use calculus, NOT calculators!!
9:11
bprp calculus basics
Рет қаралды 45 М.
I differentiated the quadratic formula
9:59
blackpenredpen
Рет қаралды 247 М.
we can differentiate anything!
8:34
bprp calculus basics
Рет қаралды 20 М.
epsilon-delta definition ultimate introduction
19:28
blackpenredpen
Рет қаралды 409 М.
tangent line & area problem from Oxford
8:04
bprp calculus basics
Рет қаралды 38 М.
3 cases for a function to be discontinuous
11:44
bprp calculus basics
Рет қаралды 8 М.
Use calculus, NOT calculators!
9:07
bprp calculus basics
Рет қаралды 447 М.
taking a derivative that WolframAlpha can't handle
5:50
blackpenredpen
Рет қаралды 59 М.
so you think you can take the derivative?
36:29
bprp calculus basics
Рет қаралды 10 М.
It’s all not real
00:15
V.A. show / Магика
Рет қаралды 20 МЛН