Halley's method is Newton's method but uses the second derivative as well as the first and gives third order convergence instead of second.
@mathamour Жыл бұрын
X=(X+A/X)/2 X= Square Root ( A ) | X=A/X X= Square Root ( A )
@mathamour Жыл бұрын
We know that, the iterative formula to find bth root of a is given by: Xn+1 = ( (b-1)*Xn + a/(Xn^(b-1)) ) / b a=12 a^(1/6) = 1.513085749 1.513085749^6 = 12 12의 6제곱근 구하기 초기 x=1.513085749 로 잡았을 때, x = ( (5)*x+ a/(x^5) )/6 = 1.513085749 a=12 a^(1/2.5) = 2.701920077 2.701920077^2.5 = 12 x=2.701920077 x = ( (2.5-1)*x+ a/(x^(2.5-1)) )/2.5 = 2.701920077
@sartazaziz8563 жыл бұрын
When your other works are so gigantic that such massive discoveries are ignored! Newton the goat.
@DeJay73 жыл бұрын
I know right! Newton has done so much in his time, from the laws of motion to optics and to literally calculating π, these sort of things are never mentioned.
@Muck-qy2oo2 жыл бұрын
@@DeJay7 adding philosophical, theological and Others.
@jcbuchin3 жыл бұрын
It does work with complex numbers too, for example 2-i with x0 = 1+i give us the following sequence {.75-.25i, 1.775-0.325i, 1.4825096- 0.3352447i, 1.4555284-0.3433672i, 1.4554667-03435607i 1.4553467-0.3435607i } and ( 1.4553467-0.3435607i)^2 is 2-0.9999999i
@dudono17443 жыл бұрын
unless you get a 0 during process
@thenewhandlefeatureissick3 жыл бұрын
super useful way, will use it all the time
@NazriB3 жыл бұрын
Lies again? Sexist Racist
@theradishkimchi3 жыл бұрын
@@NazriB u ok bruh?
@glasceur3 жыл бұрын
@@NazriB i am indeed a sexist racist, and many more on top of that
@feltyash64843 жыл бұрын
@@glasceur me too lmao
@Diogenesthedog05 ай бұрын
@@feltyash6484 I am an eugenecist.
@FranziskavonKarma3 жыл бұрын
Good luck dividing 3 by 1.732
@presauced Жыл бұрын
@@notroboteva7601good luck dividing that
@PinkeySuavo9 ай бұрын
what do you mean
@JeanMarieGalliot5 ай бұрын
@presauced it is an algorithm. It is not intended to be done by hand! (But Newton did!) I remember having used this method to calculate x^12 = value. (Useful to calculate an monthly interest rate from a yearly one. At that time, I had only Cobol at my disposal 😮
@mengkienghuong36644 ай бұрын
you can use fractions instead
@sendebad82 ай бұрын
Hhhhhh good point man 😂
@laeticiar.12822 жыл бұрын
Quake 3 developer: I’m gonna ruin this man‘s entire career.
@lukandrate9866 Жыл бұрын
Oh my god I literally discovered this formula on paper using the average inequality an hour ago because I was just pissed off that my square root approximation program worked too slowly
@aethergaming314154 ай бұрын
Thats genius 😮😮😮😮🎉🎉
@AcuteChronicАй бұрын
1:30 value on screen is x(3) = 1.732508 but correct value given in the audio is 1.7320508
@JSSTyger3 жыл бұрын
Another way... Let C = number we want the square root of, G= our guess, and E = the error If C = (G+E)^2, then C=G^2+2GE+E^2. With a small error, E^2 is approximated as 0 so C is approximately G^2+2GE and E is approximately (C-G^2)/(2G). You get the error value and you refine your original guess with it. A similar formula can be derived for solving cube roots, 4th roots, etc because all the powers of E greater than 1 drop out.
@enricomattioli53 Жыл бұрын
great video, straight to the point
@nak66082 жыл бұрын
Thanks for making the video. The "average" part was the part I was missing in my intuition. This helped me!
@PinkeySuavo9 ай бұрын
I don't get it still. I don't get how we can know if something is bigger/smaller than 'real square root' if we don't know its value. How do we know if xn is too small then a/xn will be bigger than real root?
@noahniederklein80385 ай бұрын
@@PinkeySuavo We don't need to know whether the guess is bigger or smaller, we just know that one term is bigger and one term is smaller than the real square root. Thus, taking the average of the two gets us closer to the real square root, and doing this process over and over again approaches the square root over time. n/sqrt(n) = sqrt(n). If we overestimate the square root, n/guess will be smaller than the square root because a/BIG = small. On the other hand, if we underestimate the square root, n/guess will be bigger than the square root because a/small = BIG. Does that help?
@swanandkalekar35433 жыл бұрын
Newton was really genius. Discoveris of him are very very helpful. But you are doing very nice work such spreading this knowledge all over world keep it up bro 👌👏
@hardikkadd51143 жыл бұрын
I want to ask one thing...not related to this... But how can you give an ad on KZbin as u r not eligible currently?
@Nockoutz13 ай бұрын
Amazing explanation , thank you!
@JeanMarieGalliot5 ай бұрын
It is interesting to notice that you obtain the same result in the same number of iterations with a slightly simple formula: Xn+1 = (Xn + value/Xn) / 2 Same result with less machine cycles
@ferociousfeind85383 жыл бұрын
When we average between our previous guess and the square divided by our previous guess, one of the guesses (guess, and square / guess) will be smaller than the solution, one will be larger, and the average will be somewhere inbetween, closer to the answer If you notice, x / sqrt(x) == sqrt(x), so as a sanity check, if we have the solution, and we iterate again, what we get is (sqrt(x) + x / sqrt(x))/2 which == (sqrt(x) + sqrt(x))/2 == sqrt(x) This is really neat.
@ed2023bc10 ай бұрын
Vey nice explanation. Loved the graphics. Thank you
@stompzy5283 жыл бұрын
is this method built into calculators for roots or is there another method?
@stewartzayat75263 жыл бұрын
Not sure, but taylor's polynomial expansion is also a common way to approximate some functions. Not sure how well it works with the square root function, but for exponentials, sines, cosines, it's a very good method
@stewartzayat75263 жыл бұрын
@@nycan7725 thanks for the clarification.
@dudono17443 жыл бұрын
maybe for basic calculators, more advanced probably use sqrt(x) == x^½
@takeuchi57603 жыл бұрын
@@dudono1744 a computer understands x^2 as x times x, so x^(1/2) would result in an error if there is not a specific square root algorithm programmed in the computer. You know cuz you can't multiply x (1/2) times by x
@dekippiesip3 жыл бұрын
@@takeuchi5760 convert x^n into e^(n ln(x)) then use taylor series. This works for all real number n larger than 0. Ofc it does require a computation of ln(x) too, so depending on the situation may not be as efficient.
@hardikkadd51143 жыл бұрын
Ok so i want to tell you something... I was working on finding values of negative factorials and a formula for that from like 1and ½ years maybe... I want help from you so that i can tell everyone what i found... Maybe it's not true but i had discussed my theory with my sir and he agreed... Also it gives value of 1/0 and amazingly, 1/0 isn't infinity.... I want to publish this if it's all true....
@mrgreenskypiano3 жыл бұрын
Why would you say 1/0 isn’t infinity? That implies it’s finite, or not defined. Because division would involve partitioning 1 into groups of 0, how many groups would there be? Did you mean 1/0 is not defined? I’ve tried negative factorials as well and I got the same result as you
@sendebad82 ай бұрын
This method is a slightly updated version for the ancient babylonia approximation method ... Newton was a genius but he never had the honour to mention the original ideas that he caught from
@wonduu3423 жыл бұрын
Very good explanation!
@rambo3rd4713 жыл бұрын
Wait, I'm confused. Newton's method (as shown at the beginning of the video) is used to solve the roots (zeroes) of an equation. Not to get the square root of a number. The equation you showed later in the video is different. Is Newton's method just more general then the one in the later half? And how does the square root relate to the zeroes of an equation?
@rishabhsemwal41803 жыл бұрын
Newton Raphson method is used to find any value of any function if you know the inverse of the function. For example, the inverse of sqrt is known which is square so square root of any number can be calculated. Similarly inverse of cube root is cube so it does too. Same goes of other function like logarithm, trignometric functions, because we can easily calculate the values of inverse of logarithm i.e exponential function or the same does for trigo functions. But it can only be done with Genralised Newton Rhapson method. Every function yield different formula for approximation which depends upon inverse of that function
@rambo3rd4713 жыл бұрын
@@rishabhsemwal4180 Thank you!
@chessematics3 жыл бұрын
Huh, that division method for square root yields answers with same accuracy but 10x faster.
@RixtronixLAB3 жыл бұрын
Vote up, nice video, thanks for sharing :)
@abdulazizabdulhamid20493 жыл бұрын
Is it possible any number may square root? It is in what ways? My brain was exploding when it comes of rooting.
@williamhogrider41363 жыл бұрын
Thnx, nice insights.
@animecartoon65453 жыл бұрын
Finally an AC of Moriarty the Patriot.
@williamhogrider41363 жыл бұрын
@@animecartoon6545 You like that anime too?
@Nasdos713 жыл бұрын
@@animecartoon6545 ikr
@mathamour Жыл бұрын
감사합니다 😍😍😍
@athenais7843 жыл бұрын
Nice video!
@faranocks Жыл бұрын
Working on an FPGA and I found the best general approximator is [(a+b) >> 1] for sqrt(a*b).
@RandomYoutuber234Ай бұрын
I think on the why section you just proved it converges, not that why the thing that it converges on would be the square root of the initial number ?
@lazaremoanang31163 жыл бұрын
Fastest? Not so sure. When you have to divide a huge number, it seems more complicated than doing a simple extraction.
@justlearning-ph6if9 ай бұрын
damn that's so simple and beautiful newton is the true og
@bluestrue3 жыл бұрын
Looks like narrowing the variance with each successive iteration.
@BBC6003 жыл бұрын
I think I'll stick to just pressing the √ button on the calculator.
@barrerasciencelabuniverse66063 жыл бұрын
Sorry... Not anymore!
@mohamedatef35262 жыл бұрын
Is there a method to calculate best estimate of x0 ?
@robertstermer1528 Жыл бұрын
Buy an old engineer’s slide rule and get your initial estimate from the R scales. Or, use the Babylonian method.
@imapina59978 ай бұрын
thank you
@ikhsantjambolang13053 жыл бұрын
how do you make those write on effect in the beginning? looks epic! I want to know how if you don't mind
@stashkoilia39543 жыл бұрын
manim i suppose
@ikhsantjambolang13053 жыл бұрын
@@stashkoilia3954 thanks man you are right!
@dushyanthabandarapalipana54923 жыл бұрын
Thanks!
@chisaomusician77523 жыл бұрын
Great insight
@lazaremoanang31163 жыл бұрын
It walks for functions.
@lakshya6643 жыл бұрын
I am more eager to know how Newton's eq of square roots have been derived from Newton-Raphson eq If you'll make a video on the same I'll be grateful ... Thanks
@dubiousinsights40083 жыл бұрын
look on the top of the second page here math.mit.edu/~stevenj/18.335/newton-sqrt.pdf the general equation is xn+1 = xn - f(x) / f'(x) we use f(x) = x^2 - a because x^2 - a = 0 is the general form for a square root
@cutes7867 Жыл бұрын
@@dubiousinsights4008thank you so much for this ❤
@AbhishekSingh-qn4bz3 жыл бұрын
AWESOME...🔥🔥
@divyanshujain58093 жыл бұрын
Couldn't understand 😑. Please explain me!
@opaaaalgahawy54753 жыл бұрын
*My freind in the examination room* : "Oh no, I forgot the calculator, what am I supposed to do! *Me, an intellectual* : "I saw this video yesterday that shall help me in solving this surd in only 15 steps, calculator I need not!"
@Raj-gr6dy3 жыл бұрын
I just use the long division method. That's because calculators are banned here in exams.
@swapnil723 жыл бұрын
Very Well explained
@FunWithBits Жыл бұрын
The world's fastest computer based (java or C#) 'Newton's method' can be found by searching "NewtonPlus Square root".
@sulavkhanal99473 жыл бұрын
sigma rule no 314:Use calculator
@alinebaruchi19363 жыл бұрын
Qual deles?
@WhenMarkers3 жыл бұрын
Interesting
@albertabrhamabrham29983 жыл бұрын
Thank you that was useful
@hyx68173 жыл бұрын
thanks
@kimutaiboit85163 жыл бұрын
You started off by showing Newton-Raphson formula. But you ended up showing the Babylonian method.
@victorpaesplinio28653 жыл бұрын
In fact the Babylonian method is a particular case for Newton's method. I don't know how they derived it in ancient times, but solving x²-a=0 using Newton's method will give you the same formula for sqrt(a).
@kimutaiboit85163 жыл бұрын
@@victorpaesplinio2865 I have a ‘theory’ (conjecture, speculation) on how the Babylonians derived their method. Let the unknown quantity be X and the square be S. X^2=S X=S/X (we’ve divided both sides by X) X/2=S/2X (divided both sides by 2) X=X/2+S/2X (adding 2 halves to make whole) X’=1/2(X+S/2X) after taking out the common term. That is the way I independently stumbled on the method long before I knew it had a name.
@nathanaisenberg17473 жыл бұрын
It is Heron’s method
@chohan_NM3 жыл бұрын
The Only person who made our life Hell🙂🖐️
@unclealand3 жыл бұрын
So, it only takes 20 minutes to get to the estimate! How convenient can Math get? No, never mind.
@expeditiontoabyss35972 жыл бұрын
dude you saved my life, I am so stupid. Now i see why it works (5 years of programming experience lol)
@hardikkadd51143 жыл бұрын
911th subscriber present!
@asociatiaademed74173 жыл бұрын
I might be wrong, but some say this is the Babylonian method, not Newton's discovery.
@alexdred57503 жыл бұрын
Man this is a life saver
@howled010 ай бұрын
love me some quality content
@AniketKumar-lw6su3 жыл бұрын
OMG this just saved me like tens and hundreds of marks which I would have lost because of not knowing the actual method of finding square roots
@noname_panda28363 жыл бұрын
Ain't that heron's algorithm?
@smartass82683 жыл бұрын
Yeah, thought so too...
@ScottMorgan883 жыл бұрын
Yes, Heron of Alexandria (10-70 AD), but might also have been known to the ancient Babylonians.
@noname_panda28363 жыл бұрын
@@ScottMorgan88 ah, thank you for explaining
@ScottMorgan883 жыл бұрын
@@noname_panda2836 NP. Newton's method is more general than Heron's, as it applies to any differentiable function, but reduces to Heron's formula for square roots.
@vikraal69743 жыл бұрын
Newton was the greatest
@Lisa-t1n7l9 ай бұрын
You need to talk much faster. When you sound like a mosquito, you will have achieved success.
@VintageMusic7293 жыл бұрын
Please get a better mic that doesn’t pick up your mouth sounds
@DarkGourmand3 жыл бұрын
Disagreed
@brainxd3 жыл бұрын
Fastest way for sure. Kappa.
@RixtronixLAB3 жыл бұрын
Vote up, nice video, thanks for sharing :)
@alecgamer420 Жыл бұрын
Thanks!
@hardikkadd51143 жыл бұрын
Ok so i want to tell you something... I was working on finding values of negative factorials and a formula for that from like 1and ½ years maybe... I want help from you so that i can tell everyone what i found... Maybe it's not true but i had discussed my theory with my sir and he agreed... Also it gives value of 1/0 and amazingly, 1/0 isn't infinity.... I want to publish this if it's all true....
@suryanshgarg53583 жыл бұрын
My maternal uncle is a writer and he also published some book he may help you ..