MIT 6.S191: Uncertainty in Deep Learning

  Рет қаралды 33,047

Alexander Amini

Alexander Amini

Күн бұрын

MIT Introduction to Deep Learning 6.S191: Lecture 10
Uncertainty in Deep Learning
Lecturer: Jasper Snoek (Research Scientist, Google Brain)
Google Brain
January 2022
For all lectures, slides, and lab materials: introtodeeplear...​​
Lecture Outline - coming soon!
Subscribe to stay up to date with new deep learning lectures at MIT, or follow us @MITDeepLearning on Twitter and Instagram to stay fully-connected!!

Пікірлер: 14
@ajit60w
@ajit60w 2 жыл бұрын
O.O.D means x was not even in the training set. P_test(y.x) n.eq P_train (y.x) may also mean wrong classification or open set i.e. not seen during training(feature vector not within bounds of vectors in the training set)
@vyacheslavli9254
@vyacheslavli9254 2 жыл бұрын
In the deep ensemble method the uncertainty corresponds to which particular classifier? Is it an assumption that the resulting uncertainty corresponds to the arcitecture with a near to optimal hyperparameters? It rationally should but overall sounds very handwavy. On top of that it is an uncertainty of the classifier evaluated on a training domain. How does it change on the OOD dataset?
@vimukthirandika872
@vimukthirandika872 2 жыл бұрын
Thank you MIT
@QuantAI-kp8xt
@QuantAI-kp8xt 6 ай бұрын
Very well done. Thank you.
@TheEightSixEight
@TheEightSixEight 2 жыл бұрын
Please post the slides as indicated in the URL descriptor. Thank you.
@gulsenaaltntas5398
@gulsenaaltntas5398 2 жыл бұрын
You can find the slides from the NeurIPS tutorial here: docs.google.com/presentation/d/1savivnNqKtYgPzxrqQU8w_sObx1t0Ahq76gZFNTo960
@zigzag4273
@zigzag4273 Жыл бұрын
Hey Alex. Hope you're well. Is the 2023 course going to be free too? If yes, when does it go live?
@AAmini
@AAmini Жыл бұрын
Thanks! We are actually announcing the premiere today! The first release will be March 10 and a new lecture will be released every Friday at 10am ET.
@thatapuguy2768
@thatapuguy2768 Жыл бұрын
Can someone answer my basic question? The speaker defines confidence as predicted probability of correctness. I am guessing this is NOT the same as yprob, which is predicted probability of postive class that a trained model returns for every test instance. So, how does one get an estimate the confidence?
@anvarkurmukov2438
@anvarkurmukov2438 Жыл бұрын
If you are referring to 13:30, then for a binary classification confidence is exactly what you are saying, p(y=1|x).
@SunilKalmady
@SunilKalmady Жыл бұрын
​@anvarkurmukov2438 Thanks for answering. I guess it is a bit about terminology. In this notion of confidence, overfitted models will confidently make wrong predictions. I was referring to uncertainity in those predictions aka confidence bounds of predicted scores. I have since figured out how to estimate those by bootstrapping.
@drxplorer778
@drxplorer778 Жыл бұрын
This tutorial saved my ass
@nikteshy9131
@nikteshy9131 2 жыл бұрын
Спасибо )) MIT ))))))
@user-wr4yl7tx3w
@user-wr4yl7tx3w 3 ай бұрын
he is really sloppy in his explanation. not really trying to be clear.
MIT 6.S191 (2021): Introduction to Deep Learning
56:36
Alexander Amini
Рет қаралды 560 М.
MIT 6.S191: Reinforcement Learning
1:00:19
Alexander Amini
Рет қаралды 65 М.
ССЫЛКА НА ИГРУ В КОММЕНТАХ #shorts
0:36
Паша Осадчий
Рет қаралды 8 МЛН
Жездуха 42-серия
29:26
Million Show
Рет қаралды 2,6 МЛН
БОЙКАЛАР| bayGUYS | 27 шығарылым
28:49
bayGUYS
Рет қаралды 1,1 МЛН
MIT Introduction to Deep Learning | 6.S191
1:09:58
Alexander Amini
Рет қаралды 800 М.
MIT 6.S191: Taming Dataset Bias via Domain Adaptation
42:51
Alexander Amini
Рет қаралды 23 М.
26. Chernobyl - How It Happened
54:24
MIT OpenCourseWare
Рет қаралды 2,9 МЛН
Lecture 2: Experimental Facts of Life
1:20:12
MIT OpenCourseWare
Рет қаралды 1,7 МЛН
Numerics of ML 13 -- Uncertainty in Deep Learning -- Agustinus Kristiadi
1:24:09
Tübingen Machine Learning
Рет қаралды 2,8 М.
MIT 6.S191 (2023): The Modern Era of Statistics
53:10
Alexander Amini
Рет қаралды 83 М.
Quantifying the Uncertainty in Model Predictions
33:29
Toronto Machine Learning Series (TMLS)
Рет қаралды 2,7 М.
Uncertainty Quantification and Deep Learning ǀ Elise Jennings, Argonne National Laboratory
39:02
Argonne Meetings, Webinars, and Lectures
Рет қаралды 13 М.
MIT 6.S191: Deep CPCFG for Information Extraction
40:58
Alexander Amini
Рет қаралды 20 М.
ССЫЛКА НА ИГРУ В КОММЕНТАХ #shorts
0:36
Паша Осадчий
Рет қаралды 8 МЛН