Zorn’s Lemma and Basis

  Рет қаралды 19,293

Dr Peyam

Dr Peyam

Күн бұрын

Пікірлер: 85
@blackpenredpen
@blackpenredpen 5 жыл бұрын
Your thumbnail is on point!!!!
@drpeyam
@drpeyam 5 жыл бұрын
Thank you!!!!
@Anteater23
@Anteater23 4 жыл бұрын
Excellent video. Instead of spending an hour trying to read and understand the proof, you explain it super good in under 30 minutes. Thanks.
@MsDanni123456789
@MsDanni123456789 4 жыл бұрын
I have been thinking about these things for months, finally I understand these concepts because of this video, you are so positive and make it more fun, well done!
@Leidl.Michael
@Leidl.Michael 4 жыл бұрын
Zorns Lemma is such a powerful tool to prove things like this because you only have to prove something for totally ordered subsets of a partially ordered set, which makes things way easier. For an oral exam I had to learn the proof of the equivalence of the axiom of choice and Zorns Lemma, which didn't made me zornig at all. :D
@alvinlepik5265
@alvinlepik5265 5 жыл бұрын
It also turns out that every non-zero vector space having a basis is equivalent to the axiom of choice. The non-zero bit is important, because the zero vector doesn't constitute a linearly independent subset.
@nudelsuppe2090
@nudelsuppe2090 3 жыл бұрын
Usually the span of an empty set is considered to be zero so you basically have an "empty basis" for that
@alvinlepik5265
@alvinlepik5265 3 жыл бұрын
@@nudelsuppe2090 good point. It's consistent, too. A finite linear combination over the empty set yields 0 vector.
@christianharriviktorreibol5521
@christianharriviktorreibol5521 Жыл бұрын
Is an union of sets in a chain not automatically in a chain and so automatically a member of the family of sets?
@MewPurPur
@MewPurPur 3 жыл бұрын
This vid put me to sleep at first. Now I finally got it! Super helpful and thank you.
@cruzazul2609
@cruzazul2609 4 жыл бұрын
Omg, I don't "dominate" the English and I learned more with you than with my professor who explained in my mother language SPANISH.
@ces-1200
@ces-1200 3 жыл бұрын
Same :')
@highermathematics-bx4mi
@highermathematics-bx4mi 2 жыл бұрын
I am finding this theorem from 24 hours but I couldn't find such a video now alhamdulillah now I find your lecture and enjoy it 🥳🌹🥰 very amazing
@broccoloodle
@broccoloodle 3 жыл бұрын
This guy's presentation is so charming :)
@HasXXXInCrocs
@HasXXXInCrocs 4 жыл бұрын
So essentially for any infinite dimensional vector space, a combination of ideals of V is the basis of V? Is that what a chain is? Note that any principal ideal is independent because of the absorption property.
@dthhfjjjj
@dthhfjjjj 4 жыл бұрын
I love this video, you explain it very clearly
@highermathematics-bx4mi
@highermathematics-bx4mi 2 жыл бұрын
🥳🥳🥳 very interesting manner of teaching
@ravitejassu
@ravitejassu 5 жыл бұрын
Very beautifully explained
@schwarzeseis4031
@schwarzeseis4031 5 жыл бұрын
Makes tons of sense. Gonna forget it again. Shall return.
@weinihao3632
@weinihao3632 5 жыл бұрын
Hi Dr. Peyam, thank you very much for the nice video. I found it a bit confusing that you described your sets with the term ring, since that is an algebraic structure by itself. In the beginning you shortlymention that the proof could also cover infinite dimensional vectorspaces, but in the end it is required that each member of the family is finite. Do you plan to add a follow up video to proof it for infinitely many dimensions as well?
@drpeyam
@drpeyam 5 жыл бұрын
But I proved it for infinite dimensions
@weinihao3632
@weinihao3632 5 жыл бұрын
@@drpeyam Oh, sorry, you are absolutely right! I missed your statement at 21:43. Thank you for the clarification!
@Handelsbilanzdefizit
@Handelsbilanzdefizit 5 жыл бұрын
Does it make sense, to define a derivative like this? lim h-->0 (f(x+h)/f(x))^(1/h) = f*(x) As far as I figured out, you can easily calculate attenuation or "elementary" probabilities with that. It seems, the Inverse is some kind of Product Integral (infinity multiplying) If the chance I go to the party is 50%, and my friend visits the party 50%, then we meet us there 25%. But multiplying such probabilities infinity times, then you get some bellcurve e^-x² (for many cases)
@drpeyam
@drpeyam 5 жыл бұрын
Hehe, that’ll be part of another video to be posted sometime :)
@sandorszabo2470
@sandorszabo2470 5 жыл бұрын
I'm very missed this theorem, and now I could find this video. Soon start the next semester :-)
@dgrandlapinblanc
@dgrandlapinblanc 5 жыл бұрын
I've listened and watched three times this video. Thanks.
@goatmatata2798
@goatmatata2798 5 жыл бұрын
Hello Dr peyam, I have a humble request please create a video where u prove gauss's multiplication theorem for the gamma function, I have tried it a million times but just can't get it right, please 🙏 if you do it do it in a not so complicated way, thank you in advance, from 🇰🇪 kenya
@jonasdaverio9369
@jonasdaverio9369 5 жыл бұрын
Zorn's lemma... That's reminding me some nightmares from when I was self-studying foundations of mathematics...
@lagduck2209
@lagduck2209 5 жыл бұрын
When he said it's equivalent to axiom of choice I've got strong flashbacks to when I was self-studying foundations of mathematics and lots of other topics bingeing wikipedia for hours, days, weeks and months; don't think I actually understood even 5% of what I studied, but it was fantastic trip through the beauty of maths, all of this interconnected world. And I can just barely follow this video nowadays, but I can so it's great. Also thanks for great interesting content and original ideas Dr
@jonasdaverio9369
@jonasdaverio9369 5 жыл бұрын
I've always thought Zermelo's theorem doesn't make any sense (I mean, why would there be a well-order in R?) , axiom of choice isn't perticularly counterintuitive, and Zorn's lemma doesn't mean anything in term of intuition.
@russellsharpe288
@russellsharpe288 5 жыл бұрын
@@jonasdaverio9369: The wikipedia article on the Axiom of Choice contains the following quotation: "The axiom of choice is obviously true, the well-ordering principle obviously false, and who can tell about Zorn's lemma?" - Jerry Bona"
@hungnguyen-fn8gm
@hungnguyen-fn8gm 3 жыл бұрын
how did you do it can you share with me , thank you
@mrnarason
@mrnarason 5 жыл бұрын
Great explanation
@dhunt6618
@dhunt6618 5 жыл бұрын
Thanks for another great video. Sorry, but I can't resist mentioning the 2 related problems that Zorn couldn't prove - Zorn's dilemma... (sorry again, yes, it's an old pun)
@drpeyam
@drpeyam 5 жыл бұрын
Hahahahaha
@kgjplatform0987
@kgjplatform0987 2 жыл бұрын
I have some exercises...could you help me Dr. ?
@gdsfish3214
@gdsfish3214 5 жыл бұрын
Our professor showed us in week two of first semester how zorn's lemma implies the cantor bernstein theorem or something like that... I wasn't able to keep up, but I still remember the headaches after the lecture... And I've been too scared to look at the notes I made back then.
@highermathematics-bx4mi
@highermathematics-bx4mi 2 жыл бұрын
Very amazing 🥰🥰🥰🌹🌹🌹Assalam-o-alaikum may Allah protect you from hardships ameeeeeeeeen
@ezras7997
@ezras7997 5 жыл бұрын
Is there a zenos schilling heel paradox type of thing
@ezras7997
@ezras7997 5 жыл бұрын
Don’t say there is something that ridiculous lol
@edwardhuff4727
@edwardhuff4727 5 жыл бұрын
"Contains" is used as a synonym of "includes." It isn't. A "contains" B when B ∈A. A "includes" B when B ⊂ A. A partially ordered family of sets can be "ordered by inclusion" but "ordered by containsion" is different if it even means anything. A von Neumann ordinal set "includes everything it contains": if B ∈ A then B ⊂ A, or P(A) ⊂ A. where P(A) = 2^A = set of all subsets of A = power set of A. You can't have a set that "contains everything it includes" (Russell's paradox, the set isn't well founded, A ∈ A). The sets of Zorn's lemma are posets, partially ordered, and "ordered by inclusion".
@drpeyam
@drpeyam 5 жыл бұрын
Ok, but I’ve always learned contained and includes as the same thing. I’d explicitly use B is an element of A
@edwardhuff4727
@edwardhuff4727 5 жыл бұрын
@@drpeyam I found it confusing too, and when I couldn't figure which is which, looking in Halmos Naive Set Theory it's hard to find the definition of "includes." The distinction might be less vital when elements are atoms like { 1, 2 } rather than { {{}}, {{},{{}}} }.
@alexandersanchez9138
@alexandersanchez9138 5 жыл бұрын
Also, Dr. Peyam said “circles” instead of “disks.” Indeed, concentric circles don’t contain one another. Alas, it doesn’t really matter because this is an informal (not to be confused with ‘not rigorous’) proof, and we get the gist.
@SierszulskiM
@SierszulskiM 5 жыл бұрын
As a Pole I'd just like to mention it would be nice to call the lemma "Kuratowski-Zorn lemma" - Kuratowski came up with it eevn earlier than Zorn, if I'm not mistaken.
@Anteater23
@Anteater23 4 жыл бұрын
Do you do Galois Theory?
@drpeyam
@drpeyam 4 жыл бұрын
Sadly not at all
@ellobo9999
@ellobo9999 4 жыл бұрын
Thank you!
@tarunpurohit6522
@tarunpurohit6522 5 жыл бұрын
Lv u docter
@justjacqueline2004
@justjacqueline2004 5 жыл бұрын
I am so ******* dim!Whilst I can follow it I am damned if I could solve a problem requiring this work.
@drpeyam
@drpeyam 5 жыл бұрын
I agree, me neither! I always get stuck on those problems
@foreachepsilon
@foreachepsilon 5 жыл бұрын
Isn't it V not(subset) span(beta)?
@drpeyam
@drpeyam 5 жыл бұрын
But beta is a subset of V, so span(beta) is a subspace of V
@foreachepsilon
@foreachepsilon 5 жыл бұрын
You wrote span(beta) not(subset) V which would imply there is a v in span(beta) not in V but looks like you said there is a v in V not in span(beta), right?
@drpeyam
@drpeyam 5 жыл бұрын
It’s the latter, there is v in V not in span(beta)
@foreachepsilon
@foreachepsilon 5 жыл бұрын
Dr Peyam so wouldn’t that be V not(subset) span(beta) as opposed to span(beta) not(sunset) V then?
@drpeyam
@drpeyam 5 жыл бұрын
Ooooh, I get the confusion now. I didn’t say span(beta) is not a subset, the notation means span(beta) is a strict subset of V, so span(beta) is a subset of V but not equal to V, so there’s v in V not in span(beta)
@jonasdaverio9369
@jonasdaverio9369 5 жыл бұрын
By the way, I hate (some of the) classical proofs. They really make no sense! Per example, you can show you will never find any basis on some vector spaces, but in the same time you know there has to be one. You know for sure it exists, but you know for sure you'll never find it. What is the point of it all?! Constructivism (aka intuitionism) is far superior and more intuitive (who would have thought?).
@drpeyam
@drpeyam 5 жыл бұрын
Totally agree, I prefer constructivism, but sometimes there’s nothing we can do
@jonasdaverio9369
@jonasdaverio9369 5 жыл бұрын
Then talk about it in your videos!
@drpeyam
@drpeyam 5 жыл бұрын
lol, why? It’s just an opinion, not a mathematical fact, haha. Also I don’t say I don’t like it, sometimes it’s necessary
@jonasdaverio9369
@jonasdaverio9369 5 жыл бұрын
There are whole foundations of mathematics based on constructivism. homotopytypetheory.org/book/ It is not a matter of taste. No model is true, some are useful. You can totally imagine mathematics without law of excluded middle. Saying it is necessary is like saying "Sometimes it is necessary to assume A because we want to show A."
@jonasdaverio9369
@jonasdaverio9369 5 жыл бұрын
@@drpeyam Since you know French and you seem interested, you should check out a series of video made by Science4all, it is quite old but it thing you should like it: m.kzbin.info/aero/PLtzmb84AoqRRgqV5DfE_ykuGQK-vCJ_0t From the 15th video, it begins to talk almost only about constructivism and why constructivism is better than classical logic.
@highermathematics-bx4mi
@highermathematics-bx4mi 2 жыл бұрын
My ny gusy wala face dakh kar video on ki thi because mojy bi gusa a raha tha is per😡 Now I am happy🤣🤣🤣🤣😇😇😇
@hyunwoopark9241
@hyunwoopark9241 5 жыл бұрын
Thats quite a awesome thumbnail for a mth video
@NitinVerma-nh9vp
@NitinVerma-nh9vp 4 жыл бұрын
Sir plz prove Sylow's 2nd theorem using Zorn's lemma
@newtonnewtonnewton1587
@newtonnewtonnewton1587 5 жыл бұрын
Nice video thanks D peyam السلام عليكم رمضان كريم
@Anteater23
@Anteater23 4 жыл бұрын
You look like Kaka footballer.
@waterfirecards5128
@waterfirecards5128 5 жыл бұрын
First!
@drpeyam
@drpeyam 5 жыл бұрын
Megha Jogithaya It’s been unlisted for a month, that’s why
@jonasdaverio9369
@jonasdaverio9369 5 жыл бұрын
@@drpeyam Noooo, you revealed our secret. That's really mean to us! (harmonic mean, not the arithmetic one)
@beback_
@beback_ 4 жыл бұрын
Why do you look Iranian but sound Indian
How many continuous functions are there ?
12:53
Dr Peyam
Рет қаралды 13 М.
Dirac Delta
23:17
Dr Peyam
Рет қаралды 16 М.
Counter-Strike 2 - Новый кс. Cтарый я
13:10
Marmok
Рет қаралды 2,8 МЛН
Непосредственно Каха: сумка
0:53
К-Media
Рет қаралды 12 МЛН
SLIDE #shortssprintbrasil
0:31
Natan por Aí
Рет қаралды 49 МЛН
Zorn's Lemma Demystified
33:29
sudgylacmoe
Рет қаралды 13 М.
Zermelo Fraenkel Choice
20:31
Richard E Borcherds
Рет қаралды 14 М.
Double Dual
15:58
Dr Peyam
Рет қаралды 19 М.
(RA02) Axiom of Choice, Zorn's Lemma, and the Well Ordering Principle
44:17
Let's Learn, Nemo!
Рет қаралды 1,7 М.
Hamel basis versus Schauder basis
21:58
Franks Mathematics
Рет қаралды 2,5 М.
Direct Sum
36:27
Dr Peyam
Рет қаралды 8 М.
Dual basis
22:13
Dr Peyam
Рет қаралды 45 М.
To Understand the Fourier Transform, Start From Quantum Mechanics
31:37
Physics with Elliot
Рет қаралды 519 М.
Lagrange Interpolation
20:44
Dr Peyam
Рет қаралды 32 М.
Counter-Strike 2 - Новый кс. Cтарый я
13:10
Marmok
Рет қаралды 2,8 МЛН