I like how you use "everybody" instead of "everything" -- brings the things to life and gives them personality !
@blackpenredpen5 жыл бұрын
Thanks!!
@Л.С.Мото5 жыл бұрын
Ln(1) = 0 and since its in the denominator, you would be end up in math jail again.
@Otomega15 жыл бұрын
n=2 :D
@BlondThunder5 жыл бұрын
Look again, n=2 and not 1
@Л.С.Мото5 жыл бұрын
Yeah, but he asked why he didn't go below 2 to start his journey into infinity
@rodrigothomaz63295 жыл бұрын
@@Otomega1 Guys, look at the (ln n)/n series. The guy is right, he deserves the jail
@Otomega15 жыл бұрын
@@rodrigothomaz6329 What's the problem with this series?
@Lordoftheflies2345 жыл бұрын
I'm going to teach Calc II for the first time this summer, I'm here to refresh my memory and to find good tips and tricks to give my students.
@blackpenredpen5 жыл бұрын
Very nice! I am teaching calc 2 again over the summer. How many weeks do you have for your class?
@Lordoftheflies2345 жыл бұрын
@@blackpenredpen 4 weeks. It's going to be fast!
@blackpenredpen5 жыл бұрын
Lordoftheflies234 what?!!!!!!! 4 weeks?!!!! Mine is 5 and I think it’s crazy enough. May I ask what school?
@Lordoftheflies2345 жыл бұрын
@@blackpenredpen A cegep (college) in Quebec city. I'd like to have 5 weeks too!
@Sasori_3225 жыл бұрын
Good luck sir
@zuccx995 жыл бұрын
Tomorrow our professor is giving us a blitz test on series calc 2. I think you have just saved me.
@drpeyam5 жыл бұрын
10/10 would watch again!
@blackpenredpen5 жыл бұрын
Dr Peyam definitely! Final in 10 days!!
@Supernova7995 жыл бұрын
That secret weapon used during the competitive exam
@lalgerielibre95192 жыл бұрын
Best Video about this title so far 🤝🤝♥️♥️♥️
@saddiqjeelani5635 жыл бұрын
I finished this class and still come back to these videos time and again just because he's so enjoyable to watch. This guy is truly phenomenal, explaining the toughest concepts like they're child's play. One in a million. Props.
@jhonandrew69735 жыл бұрын
My precious secret: The telescoping series.
@oscartroncoso25855 жыл бұрын
7:30-7:37 best part
@blackpenredpen5 жыл бұрын
Thanks!!
@Dalton12944 жыл бұрын
The reason why the summation of 1/(0.8)^n as n goes from 1 to infinity is because the common ratio is greater than 1. In order for a infinite geometric series to converge, r
@kevinbueno51755 жыл бұрын
That list is sooo helpful!! Im studying independently to prepare for school and my biggest problem was Series. That list helps so much when I use the Comparison Test!!! Thank you soo much!!
@arcaninejoe45745 жыл бұрын
1/(0.8)^n diverges because it is a geometric series with a common ratio of 10/8 which is greater than 1.
@bmdiscover78272 жыл бұрын
The List proof plz , and why 1/n is the border btwn convergence and divergence. with thanks
@pierreabbat61575 жыл бұрын
I thought you wanted us to compute the sums. Some sums I can do in my head, but two of them (one of which diverges) are values of the zeta function at non-integral arguments, which I don't know.
@dario28865 жыл бұрын
4:34 you can feel how badly he wanted to say to what special value it converges...
@andrewchou32775 жыл бұрын
Kepler Lp e
@LucasEccard5 жыл бұрын
@@andrewchou3277 e - 1
@ShorTBreak1675 жыл бұрын
It start at 2 because ln1 = 0 So if we start at n=1 we start with 1/0 which is undifine
@blackpenredpen5 жыл бұрын
Yup1!!
@Engineering_conceptsUOM3 жыл бұрын
Thank you sir
@ffggddss5 жыл бұрын
Very nice! For (F), I would just use the comparison test against the harmonic series, but shifted by one term: 1/√(n²+1) > 1/(n+1), for n ≥ 1 But ∑₁ºº 1/(n+1) = ∑₂ºº 1/n diverges , therefore, (F) diverges. Fred
@ianmi4i7272 жыл бұрын
Something similar can be done with some limits and improper integrals. Examples: Limits: lim (x->+ or -infinity) 2x/sqrt(x^2-3) [considering asymptotic behavior of square root], lim (x->+ or -infinity) (x^2+3x+1)/sqrt(4x^2+x^3-2x^2) [same], lim (x->infinity) (1+5x/(2x^2-x+2))^(6x-7) [there's a tricky shortcut for this one] Improper integrals: int (from 3 to infinity) (x^3+2)/sqrt(x^8+1) [asymptotic behavior of square root or comparison test], int (from 3 to infinity) exp(3x)/(exp(6x)+5exp(3x)+2) [asymptotic behavior of the sum or comparison test]; hints: (i) int (from a to infinity) exp(-px) converges if p>0, diverges if p1, diverges if p
@redrosin996 ай бұрын
A) e-1 B) diverges C) n/(n-1) D) 0.5 E) diverges F) diverges G) converges to? H) diverges I) diverges J) diverges (stirling)
@BrainGainzOfficial5 жыл бұрын
Great video! Always nice to have a cal 2 refresher :)
@blackpenredpen5 жыл бұрын
Thanks.
@SuperV2g2to2 жыл бұрын
For those who don't understand why E) diverges: The serie is a Bertrand's serie, and we have a = 0 < 1 (from n^a) then it diverges.
@LucasEccard5 жыл бұрын
Why don't you make a video trying to find out the value of some convergent series. Like letter A that is e-1 by the expansion of taylor series
@VibingMath5 жыл бұрын
Mnemonic: L for ln P for n^p B for b^n F for factorial N for n^n L P B F N (um......I dont want to think of some dirty words)
@blackpenredpen5 жыл бұрын
: ))))
@andreapaps4 жыл бұрын
The list... So brilliant to summerise convergent and divergent series in a single line :D Also you explained it like a baws.
@priyanksisodia5 жыл бұрын
thank u sir, for this, this is helpful to me
@ethanbartiromo28885 жыл бұрын
This was an amazing video!
@fragaleenzo5 жыл бұрын
I don't understand at 8:30 (F). Since √(n²+1) > √(n²) it implies that 1/√(n²+1) < 1/√(n²) which means the series is slightly below the critical value i.e. converges no?
@shlomozerbib3885 жыл бұрын
I had the same remark. But you are the first to ask ;)
@matrefeytontias5 жыл бұрын
To understand that, take the behaviour at infinity. As n goes very big, it becomes so much bigger than the 1 that you add to it that it begins to not matter whether you add a 1 or not. So eventually "at infinity", n^2 + 1 ≈ n^2, and so 1/sqrt(n^2 + 1) ≈ 1/sqrt(n^2) = 1/n, the sum of which diverges. But then you could argue "yes but I have to go to a very big n before the 1 starts to not matter !". The key of that answer is in the fact that the harmonic series diverges : the sum of 1/n goes to infinity regardless of the starting n ; whether you start summing at n = 1, n = 10^68 or whatever else, it will never converge and continue increasing to infinity. Then, you could say that you sum starting at some n0 that is big enough that for every n > n0, n^2 + 1 ≈ n^2. This way, the sum of 1/sqrt(n^2 + 1) starting from n = n0 to ∞ will be roughly equal to the sum of the harmonic series starting from n0, which still diverges. Since you would only be adding positive numbers by adding the terms from 0 to n0 that you didn't sum, the complete series diverges. QED I tried to keep it simple, but if there's something you didn't understand, feel free to ask. Also if you want to look at the proper, rigorous way to do that, it's called "equivalent series". We say that two series (u_n) and (v_n) are equivalent if their ratio tends to some constant value, ie lim u_n/v_n = C some non-zero constant value. The big takeaway is that if sum(u_n) converges and (u_n) and (v_n) are equivalent series, then sum(v_n) converges too. The contraposition says that if (u_n) diverges and (u_n) and (v_n) are equivalent series, then sum(v_n) diverges too. It's pretty hard to prove actually, and uses epsilon-delta methods IIRC
@shlomozerbib3885 жыл бұрын
@@matrefeytontias ok understood ty
@lukashorak96395 жыл бұрын
@@shlomozerbib388 Something to think about: there are infinitely many sequencies a_n such that n< a_n< n^(1+a) for any a>0. For example n*ln(n), n*ln(n)*ln(ln(n)) etc. So if a_n is slightly larger than n, you dont automatically get convergence for the a_n series. The a_n sequence must be larger enough to be equivalent to n^(1+a).
@dalek10992 жыл бұрын
You can use n^2>=1 and thus n^2+1=1/sqrt(n^2+n^2)=1/sqrt(2n^2)=1/sqrt(2)1/n which diverges because 1/n diverges.
@UtkarshKSahu5 жыл бұрын
Thanks Sir it will definitely help me in my jee advanced preparation 💕💕
@YASH-jz4sh5 жыл бұрын
Tujh se nhi ho payega chod de kuch nhi ho payega tujh se
@YASH-jz4sh5 жыл бұрын
Ma baap ka paisa mat kharab kar
@lolidemon31634 жыл бұрын
1/((.8)^n) doesn't even approach zero since .8 to any power is a decimal and if u divide any number by a decimal it spits out a larger number so it diverges regardless
@roddeguzman99585 жыл бұрын
If there was an esport for math you would be a top player. Bless you master pen
@alexdemoura99725 жыл бұрын
The List: alternatively we could insert the n^1 or n and assume in the next term of inequality as p>1. In this way: Ln(n)
@alexdemoura99725 жыл бұрын
Silly poem to memorize the List and divergence/convergence of inverses: Love is power. Power is a fact! Less is power itself. The inverse until this, Greater power to itself comes. Just replace "is" or "itself" by the favorite variable n or x.
@alexdemoura99725 жыл бұрын
Got it! I never got structured text in YT before, not even in Chrome, but for some reason I got it in my Android phone, I used WhatsApp as Draft notepad, copy and paste.
@Lamiranta5 жыл бұрын
Philosopher: bprp, can we get best friend? Bprp: no, we have best friend at home. Best friend at home: 100/(1-x)
@hassanalihusseini17175 жыл бұрын
Nice video! Can you make a video about the Kempner serieses? I was always fascinated b them how they can converge when the harmonic series and the series over all prime numbers diverges?
@bhuvird1785 жыл бұрын
Thank u dear this will help me in teaching children. I going to teach children in 23 may. Thank u
@blackpenredpen5 жыл бұрын
Who are the children?
@bhuvird1785 жыл бұрын
@@blackpenredpen 6 to 12 students dear
@shawaizhaider3978 Жыл бұрын
Factorial ❌❌ Factorio✅✅
@connerp68785 жыл бұрын
Hey I have a fun calc 1 problem I’d like u to try! The curve y = ax^2 + bx +c passes though the point (1,2) and is tangent to the line y=x at the origin. Find a, b, c.
@italixgaming9153 жыл бұрын
Even if you only want to know if the series diverges or converges, you can recognise some of them directly and not only say that they converge but show their limit. We know for example that for any real number x we have: exp(x)=sum(n=1,inf.,x^n/n!). So we know that the first series converges to exp(1)=e.
@BaterWottleDog Жыл бұрын
it should be sum n=0 not n=1 for it to equal e so that series actually converges to e-1 not e
@pratyasheeojah63115 жыл бұрын
Thank you
@gamedepths47925 жыл бұрын
Can you provide the link to proofs of this list please?
@blackpenredpen5 жыл бұрын
I haven't done the whole proof yet but here's a small part: kzbin.info/www/bejne/e321hHaqa5uAh7M
@ayushdwivedi20395 жыл бұрын
Please bro !!!! Do make next video on 100 DIFFERENTIAL EQUATIONS IN ONE TAKE!!! PLEASE🙏🏻🙏🏻🙏🏻🙏🏻🙏🏻🙏🏻🙏🏻🙏🏻🙏🏻🙏🏻🙏🏻🙏🏻🙏🏻🙏🏻🙏🏻🙏🏻🙏🏻🙏🏻🙏🏻🙏🏻🙏🏻🙏🏻🙏🏻🙏🏻🙏🏻🙏🏻🙏🏻🙏🏻🙏🏻🙏🏻🙏🏻🙏🏻🙏🏻
@williamadams1375 жыл бұрын
Ayush Dwivedi i totally agree man 👍👍
@faissalbenmalek37183 жыл бұрын
yes please
@diaconescutiberiu75355 жыл бұрын
Question: For n>1 ln n is >0. In fact (in general) for n in (1, e) we have ln n in (0, 1)....so how can we say for any n ln n > 1? It is not true...but... for n>e we get ln n > 1!!!
@ariel_haymarket5 жыл бұрын
wouldn't 1/ln n lead to a problem with n = 1, since ln 1 = 0 and therefore would render the equation undefined?
@blackpenredpen5 жыл бұрын
That's why I started with n=2
@ariel_haymarket5 жыл бұрын
@@blackpenredpen I figured as much. Thanks for the challenge question.
@blackpenredpen5 жыл бұрын
@@ariel_haymarket yup!! : )))) Thanks for watching too!
@wkstarscape2935 жыл бұрын
Natural log of 1 is zero, the reciprocal of zero is undefined, so to make the infinite series meaningful, all the terms should be defined, which is why the index starts at two and not one
@adityamajhi56085 жыл бұрын
love this
@bucketsniper54884 жыл бұрын
Is it true that you do not use the comparison test here?
@bca69435 жыл бұрын
If you take n from 1, then the lnn would be 0 1/0 is undefined
@Rain-ju2ge7 ай бұрын
I like how my professors doesn't taught me this 🙃 Thank you professor, you are very useful
@mattezmatrick94295 жыл бұрын
Yay good list i love it :) my maths tacher gave the same trick! Still happy to have you as a complement :)
@jacedonnelly7125 жыл бұрын
how would I solve integral of dx/(x^2+2x-3)^0.5
@Maharshi_Riemann_RC5 жыл бұрын
Many of those given serie's nature cam be conclude by just using Cauchy Condensation
@semiconductorsinarabic40905 жыл бұрын
incredible, thanks. plz tell me why your microphone is this big(i feel sorry for hands carrying it ). :p
@qingyangzhang8875 жыл бұрын
Well 7:10, n cannot be 1 because ln(1) = 0, so you would get 1/0, which is undefined.
@boriswolfsoul66295 жыл бұрын
Excuse me, I didn't undertand the F. The aproximation is right, and for larger numbers sum 1/sqrt(n^2+c) aproximate sum 1/sqrt(n^2) = 1/n, when n go to infinity (with c any constant). But sum 1/n^p diverge only when p is bigger or equal to 1. Until this point, we agree. But 1/sqrt(n^2+c) is ALWAYS lower than 1/n, although slightly. So, what happens?
@dalek10992 жыл бұрын
You can use n^2>=1 and thus n^2+1=1/sqrt(n^2+n^2)=1/sqrt(2n^2)=1/sqrt(2)1/n which diverges because 1/n diverges.
@SirPuFFaRiN5 жыл бұрын
In the description, the second is the series of 1/n^(2/3)
@antoinepetitjean54945 жыл бұрын
And it's the same in the video
@joepvoorburg65395 жыл бұрын
E can't be the sum from 1 to infinity, because ln(1)=0 so you would have 1/0 which doesn't exist.
@blackpenredpen5 жыл бұрын
Yup!
@joepvoorburg65395 жыл бұрын
@@blackpenredpen Hey, I just wanted to say that your videos got me really interested in math. I'm even gonna study it next year. Thank you so much.
@einnorw5 жыл бұрын
I'm so confused. This makes no sense to me. So because it's less on the list it's convergent?
@DruishQueen5 жыл бұрын
Wait why does H diverge..according to the list, isn't it bigger than others that converge so it also must converge?
@blackpenredpen5 жыл бұрын
1/0.8 = 5/4 and by geometric series. It diverges.
@euriskoo5 жыл бұрын
You have a distance of 20 meters to the equal parts of each section is equal to x so that the first x---->t then the second x ----->1/2t then 1 / 4t … and so on, Calculate the total distance in terms of X, and the time took?
@kee400403105 жыл бұрын
好棒的list!!
@killing_gaming0973 Жыл бұрын
ln 0 is infinity, ln 1 is zero. 0+ infinite cannot be defined. That's why it starts from 2
@chouayabdelali32415 жыл бұрын
do more algebra things :) pls
@ketos2ketos2595 жыл бұрын
Bravo :-)
@UniformDelta005 жыл бұрын
#DIV/0! ln(1)
@mehmeteminconkar2590 Жыл бұрын
N equals one gives us zero on the denominator which is undefined
@pooi-hoongchan86805 жыл бұрын
Sorry, you did say n approaches infinity. Forgive this old man.
@alitarek71645 жыл бұрын
I want to learn about the list And diverge and converge I need a link pls
@abrown65395 жыл бұрын
I have a problem with equation F. The denominator (n^2+1)^0.5 gets arbitrarily close to n as n goes to infinity, fine. Since the harmonic series is divergent, this must be divergent, right? But wait. That denominator is ALWAYS infinitesimally MORE than n. So what we have is a series that consists of terms that are of the form 1/n^p, where p MUST be greater than one every time. Does that not suggest this series is convergent? In other words, the harmonic series is the hard boundary of divergence, and this equation is on the convergent side of it, even if only infinitesimally. No?
@abrown65395 жыл бұрын
Also, the explanation for I doesn't make sense in light of the explanation for J. In I, ln(n) is much smaller than n^1 as n goes to infinity, so the limit should go to zero and the series converge. It's the same reasoning used in J. What's the difference?
@dalek10992 жыл бұрын
The limit going to 0 isn't enough for convergence.
@dalek10992 жыл бұрын
You can use n^2>=1 and thus n^2+1=1/sqrt(n^2+n^2)=1/sqrt(2n^2)=1/sqrt(2)1/n which diverges because 1/n diverges.
@visionaerie4 жыл бұрын
can somebody PLEASE tell me what "The List" is???
@Learnerz_isle5 жыл бұрын
Lim n^n=1 as n ->infinity
@blackpenredpen5 жыл бұрын
Aroonima Sahoo I think you are thinking about the nth root of n
@wojciechchudek93794 жыл бұрын
I wait for formul for every sume.
@anshul45895 жыл бұрын
Can you please make video tutorial on series convergence and divergence. I am so confused.
@blackpenredpen5 жыл бұрын
check out my 100 series
@jomelherras89105 жыл бұрын
I love you😍
@chinesecabbagefarmer5 жыл бұрын
nike! i wonder if they make brown jackets? 🤔
@blackpenredpen5 жыл бұрын
Why brown jacket?
@AJ420BLAZIN2 жыл бұрын
ln(1)=0 and it’s in the denominator and we cannot divide by 0
@istvanszabo3275 Жыл бұрын
My teacher says there is no such thing as "The List" 😢 What is its official name or what theorem(s) is it based on? I keep failing saying The List 😢 Thank you!
@zanti41324 жыл бұрын
All these summations are pretty non-controversial. My question is, is the following summation convergent or divergent (n goes from 1 to ∞)? ∑ 1/(n² - 10n + 24)
@italixgaming9153 жыл бұрын
When you look at n²-10n+24, you know that the product of the roots is 24 and that the sum is 10 so n²-10n+24=(n-4)(n-6). Which means that 1/(n²-10n+24) is not defined at all for n=4 or n=6. So the answer is not that the series converges or diverges, it doesn't even exist. We need to be able to calculate every term of a series.
@zanti41323 жыл бұрын
@@italixgaming915 It is certainly true that the n=4 and n=6 terms are undefined, but does that necessarily mean the summation doesn't exist? In fact, by using partial fractions we can rewrite the summation as (1/(x-6) - 1/(x-4))/10. Then, by expanding the terms, we get (1/10)(-1/5 - (-1/3) + (-1/4) - (-1/2) + (-1/3) - (-1/1) + ...) when everything cancels out except for two terms - including the two undefined values - giving us -9/200 for the sum.
@italixgaming9153 жыл бұрын
@@zanti4132 1/0 is undefined and 1/0-1/0 is still undefined.
@zanti41323 жыл бұрын
@@italixgaming915 It's debatable. To take a similar situation from calculus, is the integral of 1/x from -1 to +1 equal to zero, or is it undefined?
@italixgaming9153 жыл бұрын
@@zanti4132 Undefined. I suppose that you say that if you integer 1/x on [-1;-1/n] and [1/n,1] you obtain 0 so this is why you pretend that 0 could be the result but if you integer on [-1;-1/n] and [1/n²,1] you obtain log(1/n²)-log(1/n)=log(1/n) and you have an infinite limit when n ---> infinite.
@Czeckie5 жыл бұрын
that explanation for F) feels incomplete and unsatisfying. The correct way is to derive the inequality 1/n
@abraham57814 жыл бұрын
Bold of you to assume that I am that smart...... P.S you were wrong mate
@jinishtrivedi24295 жыл бұрын
Please make a video on derivative of x^x by first principal because no body has done it by first principal Please like my comments if you also want it
@Brandon-yk6st Жыл бұрын
1/(b)^n. b
@flyingpenandpaper61193 жыл бұрын
Little bit of clickbait. The title seems to imply you can also evaluate the convergent series in your head. I was wondering how to do that for C. Of course you can't.
@WildNtrOut5 жыл бұрын
So im guessing this is how our final will be :)?
@blackpenredpen5 жыл бұрын
U r..?
@WildNtrOut5 жыл бұрын
U guess... :)
@nimmira5 жыл бұрын
in-fi-nit-lee :)
@Anonym-pv2nj5 жыл бұрын
we start with ln2 because ln1 is equal to zero and you can not devide by zero
@gonzalofdez37115 жыл бұрын
divergess...
@紀昱安-t8j5 жыл бұрын
0.16460844=(x^(x)*1.7^(1.7))/((x+1.7)^(x+1.7)) how to solve step by step?
@Brandon-yk6st Жыл бұрын
1/0🚫
@مسيومدين-ط2م5 жыл бұрын
I want to get citizenship or residency - how can you help me please
@pooi-hoongchan86805 жыл бұрын
The list is not correct
@blackpenredpen5 жыл бұрын
Which part?
@pooi-hoongchan86805 жыл бұрын
Sorry, my maths is no good. I think you should specify n approaches infinity. Or you should say for large n. I was plugging in some figures but this did not work. I am a 70 yrs old guy learning a lot of maths from you. I did maths in Uni and 98 % percent forgotten.
@blackpenredpen5 жыл бұрын
@@pooi-hoongchan8680 It's okay. No worry about it. I did mention about as n goes to inf right next to "the list". And wow I am glad to have you here. Hope you enjoy my channel so far! Thank you.