Those were some of the best explanations about hidden layers and numbers of neurons I could find, also making it very easy to see in your python plots. Keep up the good work!
@DigitalSreeni3 жыл бұрын
Great to hear!
@dinhh42483 жыл бұрын
16:36 is the answer for how many layers do you need
@NM-el6ps3 жыл бұрын
Thank you so much
@nate45113 жыл бұрын
Finally, someone who speaks math. Thank you sir
@andrewkicha16282 жыл бұрын
Such a wonderful explanation to the really fundamental question. I wonder why there is so little accessible information for beginners on this topic. Thanks a lot for the video.
@Samb123316 ай бұрын
You are an amazing teacher, I hope this comment reaches you well! This is some top class free content! Thank you!
@poffer313 жыл бұрын
The approach to explaining it trough linear regression was very useful for me, thank you!
@DigitalSreeni3 жыл бұрын
Great to hear!
@wuzark Жыл бұрын
This is such an intuitive and helpful video. I can see that there is a lot of hard work behind this video. Great job!
@abhilashchaturvedi14792 жыл бұрын
I really loved your approach. You are explaining the technicalities and discussing the various possibilites while staying on the subject. It's thorough. With other youtubers, I felt like they were too basic and missing the crucial implementation part. Thankyou!
@PatrickBateman12420 Жыл бұрын
Finally, an explanation that goes straight into code. Awesome!
@AdobadoFantastico3 жыл бұрын
This is a fantastic explanation. I really appreciate how you involved the math as you walked through your implementation. A lot of people hand wave the math.
@vaibhavs25224 жыл бұрын
I don't know why there are too few likes on such an awesome video..you are really great sir.
@DigitalSreeni4 жыл бұрын
So nice of you
@3DComputing3 жыл бұрын
Strange isnt it, so many people asking THIS question, and so few people can answer it, THANK YOU
@DigitalSreeni3 жыл бұрын
Well, I try to answer it but in reality it is difficult to definitively answer this question as so much depends on the nature of input data.
@HK-jw2et2 жыл бұрын
@@DigitalSreeni kzbin.info/www/bejne/pnW7lZ-OocZ2mdE Hey. Can you pls help me in understanding how many nodes he used in this project. It's a project based on recognising sign language
@shipengxu2 жыл бұрын
Thanks!
@DigitalSreeni2 жыл бұрын
Thank you for your kind contribution. Keep watching.
@devishaarunadevitiwari39882 жыл бұрын
Thanks for giving clarity on such an important notion. worth it.
Amazing..helps me lot for my research work. Thanks
@cyruskavwele53042 жыл бұрын
Fantastic explanation.
@neerav3023 жыл бұрын
You are awesome .. you taught me this topic like pro
@DigitalSreeni3 жыл бұрын
Glad to hear that
@momchi23 жыл бұрын
many good hints and insights here
@DigitalSreeni3 жыл бұрын
Thanks
@troupebase22922 жыл бұрын
Thank you for this decent explanation
@yacineyacine29512 жыл бұрын
this video is like finding gold ... thannnk youuu
@HK-jw2et2 жыл бұрын
kzbin.info/www/bejne/pnW7lZ-OocZ2mdE Hey. Can you pls help me in understanding how many nodes he used in this project. It's a project based on recognising sign language
@lakeguy656162 жыл бұрын
adding hidden layers without activation functions is essentially linear regression. If the problem is linearly separable, you can find a solution. complex problems with non-linear solutions require hidden layers with activation functions. A more complex solution requires a higher number of hidden layers and activation functions. The "magic" is in the activation function.
@madhumitagiribabu3 жыл бұрын
thanks much sir found right content after long search
@danielniels222 жыл бұрын
thanks sir, this is such an enlightenment 😂 ive been using 4 or even 6 layers by thinking that the model could learn very deep, like some unrecognized patterns 🤣🤣 but turns out just use 1 to 2 😭😭 thanks sir, im new to your channel this week btw 🙏
@DigitalSreeni2 жыл бұрын
Great to hear!
@ahmedmoayadalhasani2 жыл бұрын
Hi Sreeni, I had a significant mistake and training and test data differences. This, in my opinion, is due to the huge values of the output response numbers, which have increased from 64 to over a thousand. Please, how can I resolve this issue? Can I divide them by their maximum value to fix the issue? What do you prefer, please?
@aqibfayyaz16193 жыл бұрын
Awesome video that is what i was looking for.
@tahseen47904 жыл бұрын
Thanks a lot. I regularly watch your Videos.
@DigitalSreeni4 жыл бұрын
Thanks for watching my videos, I donate all money from KZbin advertisements to charity so please thanks for your contribution by watching part of the advertisements.
@rfreeman0572 жыл бұрын
Excellent video!
@surajshah43174 жыл бұрын
wow, thank you so much for the great video. Sir can you make videos on segmentation using GAN and UNet ??
@DigitalSreeni4 жыл бұрын
They are already on my channel. Please explore videos on my channel.
@pramishprakash Жыл бұрын
Great video sir
@shubhamsongire67122 жыл бұрын
Powerful explination
@tso87613 жыл бұрын
17:53 we can use dropout technique to reduce overfitting btw
@RajeshSharma-bd5zo4 жыл бұрын
Great video and well explained!!
@DigitalSreeni4 жыл бұрын
Thanks
@tharindukanchana20773 жыл бұрын
Thank you sir, very nice explanation
@DigitalSreeni3 жыл бұрын
You're most welcome
@shivamsingh-fn8vz3 жыл бұрын
ok so my doubt is i read on stack exchange and also ur 3 rd point in node section that neuron size should be 2/3 of input size so here the input size is equals to number of unique features or length of features input (len of dataset) and also 2/3 neuron = all the neurons in all the layers or only in single layer
@hahavv70583 жыл бұрын
excellent vedio that give me great help!think you sir~
@DigitalSreeni3 жыл бұрын
You are most welcome
@dragnar47435 ай бұрын
So, basically there is no thumb rule. Ofc, it's understandable as it depends on data. So, we have to do hit & trial and observe the loss & accuracy from train-test set.
@domenicobezuidenhout15874 жыл бұрын
For my thesis I am using weather data to predict future values using the CNN but for my loss and Val loss I get nan values? Do you know of a way I could fix this sir?
@DigitalSreeni4 жыл бұрын
There are many reason why you’d get a NaN for loss and the most probably reason is high learning rate. If your learning rate is 0.01 try changing it to 0.001 and see if that helps.
@lerneninverschiedenenforme75133 жыл бұрын
I didn't understand what's happenning, when the number of hidden nodes increase. Does that also lead to overfitting?
@DigitalSreeni3 жыл бұрын
Yes, increasing the number of nodes will also lead to overfitting. Anything that increases the nonlinearity in the model and makes it easy for the model to map training data will lead to overfitting.
@lerneninverschiedenenforme75133 жыл бұрын
@@DigitalSreeni Thank you!
@abderrahmaneherbadji54784 жыл бұрын
Many thanks
@DigitalSreeni4 жыл бұрын
You're welcome.
@mojoway93793 жыл бұрын
Thanks for the video very helpful
@pallavi_44883 жыл бұрын
you are worth listening
@DigitalSreeni3 жыл бұрын
Thank you very much.
@ssonicmoumed4 жыл бұрын
Thank you, great explanation.
@DigitalSreeni4 жыл бұрын
Glad it was helpful!
@dikshitlenka3 жыл бұрын
Can't we use Keras Tunner to find the exact number of layers and neurons required in the network?
@DigitalSreeni3 жыл бұрын
Keras is for hyperparameter tuning and I don't think it is for defining models. I may be wrong as I haven't explored Keras tuner much. If your goal is to find the best model for you problem I recommend AutoKeras.
@heliyahasani68592 жыл бұрын
Least Squares Optimizer is same as Analytical Solution.(Wrote this comment to avoid confusion :) )
@pfever3 жыл бұрын
10:43 I think that if the learning rate is too small it could get 'stuck' in a local minima, isn't it?
@DigitalSreeni3 жыл бұрын
Depends on the problem.
@aomo52932 жыл бұрын
error again when calculating mean squared error ! line 71 you should use: np.mean((y_test--pred)**2) not np.mean(y_test-y_pred)**2 !! Thank you for good content
@kakshah4 жыл бұрын
Hi, thank you, may I know which tool is used to make this video?
@DigitalSreeni4 жыл бұрын
Not sure what you are asking... can you be a bit specific?
@SomenathChakraborty3 жыл бұрын
Could you provide the data source details but it is very small dataset with very limited parameter. But I appreciate your video for clear clarification of the concept.
@tesfayeabera49784 жыл бұрын
please I need an explanation of how to increase the layer of deep belief network from three-layer to more than 6 and its advantages and disadvantage .
@somewhereinparallelunivers42264 жыл бұрын
I have 7lakhs data.so can you suggest me how many neuron can i use for my neural network.. i am using curve fitting neural network.
@ad.donielson2 жыл бұрын
How about neural network without hidden layer for classification?
@grdev30664 жыл бұрын
"If your problem can be solved with linear fitting..." Me: trying to survive 2020 ...
@tehpson3 жыл бұрын
OMG thank you, I finallyu understand
@TheConsoleMania2 жыл бұрын
the number of neurons in both hidden layer, should be the same?
@DigitalSreeni2 жыл бұрын
No, they can be anything.
@TheConsoleMania2 жыл бұрын
@@DigitalSreeni yeah, but if I follow the rules in the video, i obtain about 12 neurones. This number should be the same on both hidden layer ? Or maybe the second one should be smaller ?
@TheConsoleMania2 жыл бұрын
@@DigitalSreeni I have 12 input and 1 output
@NoamRathaus3 жыл бұрын
TLDR; 1 or 2 hidden layers - or just guess because he doesnt know
@DigitalSreeni3 жыл бұрын
This is an educational video intended to train the viewer on the implications of number of neurons and hidden layers. In fact, I try to design my content such a way that the viewer gains incremental knowledge on a specific topic. I am sorry if the title set a different expectation to you.