this was literally the best explanation, i have been trying to understand the reason behind this approach for quite some time now, been surfing youtube all day today. and finally. good work. thank you!
@ARYANMITTAL10 ай бұрын
Glad it was helpful Sakshi 🙇🫡🫂
@aayushyavajpayee49898 ай бұрын
from 8:16 to 8:48, you can avoid that and video will become shorter and crisp. You are doing great
@tusharkumarraj60663 ай бұрын
loved the explanation. Watched explanation video from neetcode and didnt understand much , this one was so simple and intiutive
@sameershah149210 ай бұрын
Amazing approach ❤
@ThisIsNotMyYoutubeAccount10 ай бұрын
Can you make a video of your day time table ?
@kushal826110 ай бұрын
Yes please!
@Sahilsharma-sk5vr10 ай бұрын
yes please
@ganeshsharma581010 ай бұрын
amazing approach bhaiya
@abhinavdubey_710 ай бұрын
Thankyou my brother amazing.
@shalinijha735910 ай бұрын
just thankyou for existinggg
@learningmaths78610 ай бұрын
Thanks Aryan ❤
@HarshSharma-hi9vc10 ай бұрын
nice explanation
@codedecode868610 ай бұрын
nice approach
@CodeMode931310 ай бұрын
badia
@alifrahman709910 ай бұрын
thanks
@ritishrai58110 ай бұрын
Oh f . I did this using the BIT MANIP trick you taught in one of your previous videos . I guess the tc would still be equal to the no of bits right? #define ll long long class Solution { public: void calcBitRange(vector&bits, int num) { if (num==0) { return ; } if (num==1) { bits[0]++ ; return; } else if (num==2) { bits[0]++; bits[1]++ ; return ; } ll bitLen = log2(num); ll nearPowerOf2 = 1ll =0 ;i --) { bits[i]+= nearPowerOf2 >> 1ll ; } calcBitRange(bits,num-nearPowerOf2); return ; } int rangeBitwiseAnd(int left, int right) { vectorrange1(65,0) ; vectorrange2(65,0) ; if (left==0) return 0 ; if (left>1) calcBitRange(range1,left-1); calcBitRange(range2,right); ll ans = 0 ; for (int i =0 ; i
@whoshyam5 ай бұрын
please provide your onenote page link
@parthbhatti415110 ай бұрын
why chatgpt says O(log(right)) time complextiy ?
@sahilkarwani962910 ай бұрын
if u take the maximum value of right according to question then it will be 2^32 then O(log(2^32)) gives you O(32) which is O(1).
@RachitKumar-yp2ub10 ай бұрын
worst case time complexity is O(32). cause at max we might end up taking 32 traversals.