Respected sir, 1. Please Explain briefly about polynomial rings 2. How to find maximal ideal for the polynomial rings
@samiransarkar37125 жыл бұрын
Lagrange's theorem will only be applicable if the group is finite .
@naeemshah51235 жыл бұрын
Let I be an ideal of ring R. Then I is maximal iff (I, a) = R where (I, a) = I + .. Please make a video on this..
@tesfawteshome37582 жыл бұрын
It is nice to me. Please prove that every non zero ring has at least one maximal ideal.
@AllyLearn2 жыл бұрын
For more lectures, please download AllyLearn android app
@kalmabiyale31062 жыл бұрын
Sir how every Ideal is a subgroup of ring
@muhammadhanif4604 жыл бұрын
Thanks Sir💝💝...Well Explanation 👌👌👌👌
@goravgupta93343 жыл бұрын
Marvellous explanation sir
@AllyLearn3 жыл бұрын
For more lectures on Ring Theory and Higher Mathematics, download AllyLearn android app. Use invite code - NEW25 while registering and get 25 coins (limited period offer). Use these coins to unlock papers. Link play.google.com/store/apps/details?id=com.allylearn.app Regards, Team AllyLearn
@neelamsharma45026 жыл бұрын
Thank you so much ☺️ 😍
@Familysmile12352 жыл бұрын
Thanks ☺
@AllyLearn2 жыл бұрын
अगले पांच मिनट आपके Maths पढ़ने का तरीका बदल सकते हैl Download the Allylearn app now and start learning from 900+ video lectures and Notes No registration required for a try पहले इस्तेमाल करें फिर विश्वाश करें l Link - play.google.com/store/apps/details?id=com.allylearn.app Hope you like our work Regards, Team AllyLearn
@zoniamalikzoniamalik5 жыл бұрын
an ideal in Z is maximal if and only if it is generated by a single prime number.why?Plz Answer this
@AK-ij9rx4 жыл бұрын
In Z8 if we consider principal ideal generated by 3 that is we get {0,1,2,3,4,5,6,7} All numbers in Z8 But in the video it is mentioned that ={0,3,6} only
@AllyLearn4 жыл бұрын
Thanks for mentioning it we will look into it.
@aaryankaushal20175 жыл бұрын
In the last question is contained in,then how can both and can be the maximal ideals of Z12
@AllyLearn5 жыл бұрын
3 belongs to but 3 does not belong to so how can is contained in . Hope this will help you. Regards, Team AllyLearn
@aaryankaushal20175 жыл бұрын
So can we conclude that it is not necessary that maximal ideal should have maximum number of elements becausehas more elements than but both are maximal ideals..???
@AllyLearn5 жыл бұрын
@@aaryankaushal2017 yes... maximal ideals are not related to number of elements in the ideals.
@aparnaudayan62883 жыл бұрын
Super class sir
@vanshikasinghal49484 жыл бұрын
In Z8, how come we didn't consider (5) & (6) &(7) when talking about ideal of order 2?
@AllyLearn4 жыл бұрын
By Lagrange theorem order of subgroup divides order of Group. Therefore, we are considering only those sets/subgroup whose number of elements divides order of G. Hope, this will help you. Regards, Team AllyLearn
@vanshikasinghal49484 жыл бұрын
@@AllyLearn Sir suppose we look in Z12. In this we have to find an ideal of order 3. Both {0, 4,8} and {0, 5,10} satisfy the conditions of ideal. Then which will we consider?
@bar_of_mathematics44 жыл бұрын
@@vanshikasinghal4948 brother here we have to find maximal ideal so 4,5....both are considered but we have to find the maximal ideal
@SUJEETKUMAR-md5zr4 жыл бұрын
So nice sir Big fan of you sir
@AllyLearn4 жыл бұрын
Thanks... You can now watch our latest lectures on our android app. The benefits of our app are: 1. It is FREE 2. No annoying ad 3. Save upto 80% data with highly optimized videos. 4. Syllabus, notes and topic wise lectures are available. The link of the app is here play.google.com/store/apps/details?id=com.allylearn.app Regards, Team AllyLearn
@nidhiraghav54194 жыл бұрын
Sir apne videos private kyu krdi sir
@AllyLearn4 жыл бұрын
Taki aap log humari app par aur ache se padh sake. You can access private lectures by downloading our android app. The link of the app is play.google.com/store/apps/details?id=com.allylearn.app Regards, Team AllyLearn
@nidhiraghav54194 жыл бұрын
@@AllyLearn ok
@saswatsir85525 жыл бұрын
me jese 3 ke multiple leke test kiye, 1st example me bhi to 3 k multiple le sakte he. Agar 1st example me 3 k multiple lenge to aur ek ideal aa sakta he {0,3} aur iska order bhi 2 he, upar se 2|4. Please explain sir
@AllyLearn5 жыл бұрын
{0,3} will not form an ideal. Please, verify the definition of ideal. Hope this will help you. Regards, Team AllyLearn
@ayushmantiwari75476 жыл бұрын
Why have u put bar on elements of Z4 and Z8
@AllyLearn6 жыл бұрын
Because they are equivalence classes.
@03_chiraggupta774 жыл бұрын
Sir u have not properly explained the maximal ideal of Z4.😔
@AllyLearn4 жыл бұрын
What this lecture - kzbin.info/www/bejne/h5e0iHqZnt9sirM You will be able to find maximal ideals of Zn. Regards, Team AllyLearn
@zoniamalikzoniamalik5 жыл бұрын
SuPerb💕...Thnx Al0t
@AllyLearn5 жыл бұрын
Thanks for your valuable feedback.
@heisenbergmuzik49484 жыл бұрын
Misleading!!! You have used converse of Lagrange theorem. So, you must have mentioned it is abelian group coz Lagrange converse is true for abelian groups only. Rather you should have stated following theorem- order of subgroup of every cyclic group is factor of the order of group. Here, Z4 is cyclic.
@ARTISHARMA-cb6lu5 жыл бұрын
Where is definition of ideal
@AllyLearn5 жыл бұрын
For complete list of lectures please visit our website www.allylearn.com. Regards, Team AllyLearn
@krishna-ojha-kakdwip5 жыл бұрын
Nice sir
@شروقعامرطارشعلي4 жыл бұрын
find all a ideal inZ23
@AllyLearn4 жыл бұрын
Please watch this lecture kzbin.info/www/bejne/h5e0iHqZnt9sirM. This will help you. Regards, Team AllyLearn
@RideR-SAM655 жыл бұрын
Thnku so much sir
@saimasajid15403 жыл бұрын
👍👍❤
@gunjansekhwal71774 жыл бұрын
Sir smjh nhi aaya
@AllyLearn4 жыл бұрын
Watch the lecture again you will get it, it's quite a simple concept.
@sooraj1375 жыл бұрын
is only maximal ideal in Z12.how is maximal in this.
@AllyLearn5 жыл бұрын
Try to solve it by yourself and just apply definition of Maximal Ideal.
@dhananjaysahani44705 жыл бұрын
Nice sir
@zoniamalikzoniamalik5 жыл бұрын
an ideal in Z is maximal if and only if it is generated by a single prime number.why?Plz Answer this