if you are a high school student living in the NorCal area, then you should definitely consider participating in the Berkeley Math Tournament on Saturday, November 5th, 2022. Please visit www.ocf.berkeley.edu/~bmt/ for more info. I will be going to BMT as a guest. We (meaning all my subscribers and myself) will be sponsoring BMT so they can offer scholarships of $1000 to the first place, $500 to the second place, and $300 to the third place. Big thanks to all my subscribers and special thanks to all my patrons and channel members. I know this is not possible without you guys! Also, Shout out to the whole BMT team (all the organizers and problem writers)! I can’t wait to meet everyone there! If you are also interested in sponsoring BMT and making an impact, please contact communications@bmt.berkeley.edu Thank you!
@leonardobarrera28162 жыл бұрын
And for Southtowns América pearsons :(
@wowZhenek2 жыл бұрын
For the second method it is arguably better to do this substitution: u = x^2 - 2x + 4, so you end up with (u-1)*(u+1) - 3 = u^2 - 4 = (u - 2)*(u + 2)
@tbg-brawlstars2 жыл бұрын
Yes
@fiathla2 жыл бұрын
I would have done that, too
@spikypichu2 жыл бұрын
Exactly what I was thinking!
@adityaraajsingh432210 ай бұрын
Just use the quadratic formula 🤣
@MyOneFiftiethOfADollar Жыл бұрын
Thanks for being honest about how the problems you create are "designed" to work out nicely if one applies the correct factoring technique. Lotta Love!
@rollingdigger192 жыл бұрын
You really understand my needs as a calculus student. Factoring are one of most obstacles I get stuck at.
@o_s-24 Жыл бұрын
Math is really satisfying when you get what's going on
@prefabrication Жыл бұрын
I've always had a problem with factoring as if I can't visualize it well. The second substitution method (specifically U-substitution) is a brand-new favorite of mine. Thank you very much!
@Golololololo2 жыл бұрын
Thanks It's really great and your solutions are really intelligent😯 I liked the "double cross method" it's so useful👍🏼
@coltonboxell19602 жыл бұрын
The cube trick really blew my mind! Thanks
@timeonly14012 жыл бұрын
For #3: I also made the sum of cubes & factored, x^3+8 = (x+2)(x^2-2x+4) = (x+2)*u, where u = x^2 - 2x + 4. Then I rewrote the squared quadratic factor terms of u: (x^2-2x+5)^2 = [(x^2-2x+4) + 1]^2 = (u+1)^2 = u^2 + 2u + 1. The expression becomes: (x+2)u + (u^2 + 2u + 1) -1 = (x+2)u + u^2 + 2u = u ( u + x + 4) = (x^2 - 2x + 4)(x^2 - x + 8). Done!
@samueljehanno Жыл бұрын
Wow
@jin_cotl5 ай бұрын
How did (x+2)u + u^2 + 2u = u (u +x+ 4) ?? Shouldn’t it be u(u^2 + 2u + x + 2) ??
@jin_cotl5 ай бұрын
I think I got it, yes the answer is correct, steps are right too but it skipped like 3 steps so I got lost.
@tedkaczynski27272 жыл бұрын
in the second one i considered to use u =x²-2x+4 so we will have (u+1)(u-1)-3 and we will have u²-2² :)) and then we will have (x²-2x+2)(x²-2x+6) easily and fast
@johnnykrocker56042 жыл бұрын
why, we will have u^2-2^2?
@gdtargetvn24182 жыл бұрын
@@johnnykrocker5604 yes, that's the point
@aayushswami30222 жыл бұрын
Nice
@Arbion262 жыл бұрын
@@johnnykrocker5604 because after we factor we'll have u^2-1-3 Simplify u^2-4 Rewrite 4 as 2^2 u^2-2^2 Now you can factor (u-2)(u+2) Now you should resubtitute, but im to lazy to do that
@johnnykrocker56042 жыл бұрын
@@Arbion26 ohh, yes! I already see this. Thanks bro.
@holyshit9222 жыл бұрын
x^4-4x^3+12x^2-16x-15=0 Firstly group the terms with x^4 and x^3 and rest (x^4-4x^3) -(-12x^2+16x-15)=0 Now we complete the square the expression in leftmost bracket (x^4-4x^3+4x^2)-(-8x^2+16x-15)=0 (x^2-2x)^2-(-8x^2+16x-15)=0 Expression in the other bracket is quadratic and will be perfect square when its discriminant is equal to zero If we try to calculate discriminant now it may appear that discriminant is not equal to zero so we have to introduce parameter to make discriminant dependent on it We introduce parameter in such way that expression in leftmost bracket remains perfect square (x^2-2x+y/2)^2-((y-8)x^2+(--2y+16)x+y^2/4-15)=0 Calculate discriminant and force it to be equal to zero (-2y+16)^2-4(y^2/4-15)(y-8)=0 (y-8)(y^2-60)-4(y-8)(y-8)=0 Cubic resolvent is partially factored and is easy to see that y=8 is solution (x^2-2x+4)^2-1=0 (x^2-2x+3)(x^2-2x+5)=0 x_{1}=1-sqrt(2)i x_{2}=1+sqrt(2)i x_{3}=1-2i x_{4}=1+2i This method for quartic is quite easy and never fails but usually needs to solve cubic equation (so called cubic resolvent)
@autismspectrum-k7y2 жыл бұрын
for the 1st question i personally wouldve just polynomial long divide after factor theorem i didnt even know this sht is possible thxs
@reddestglizzest Жыл бұрын
Your expressions being all proud about Makinh up your own methods makes me so happy😭I truly wish to achieve that soecific achievement
@owlsmath2 жыл бұрын
That was great! I like the third problem best :)
@spikypichu2 жыл бұрын
These are some great techniques, thanks!
@Enormousguy2 жыл бұрын
Thanks for teaching me this amazing method
@reidflemingworldstoughestm13942 жыл бұрын
Very nice. Finding on your own is the best.
@bryanjara4772 жыл бұрын
Mr. Blackpenredpen I really enjoy your videos and it blows my mind how you solve things, it’s just awesome!! Do you have any resource for me to practice this types of factorization? Greetings for Costa Rica 🇨🇷
@dosedemaths Жыл бұрын
@SuryaBudimansyah2 жыл бұрын
Good luck with the tourney, may the best wins!!
@KazACWizard2 жыл бұрын
First one you can just express it as f(x) and set it equal to the product of two quadratics. Expand coefficients and equate them to f(x)
@DaMoNarch912 жыл бұрын
Not as quickly for a math tournament
@KazACWizard2 жыл бұрын
@@DaMoNarch91 it takes 2min
@MyOneFiftiethOfADollar Жыл бұрын
Why couldn't you "just express it" as the product of a linear and a cubic? That requires some explanation.
@chadd9907 Жыл бұрын
thanks teacher this was very nice i am impressed especially last one.
@EulersEye7 ай бұрын
We are proud of you for figuring that out bro
@comingshoon27172 жыл бұрын
GREAT!!! Saludos desde Chile
@SuperYoonHo2 жыл бұрын
Thank you sir!!!
@el_chippy_chips_202 жыл бұрын
Nice video as usual
@SidneiMV7 ай бұрын
Nice tricks! Factorization is an art.
@jin_cotl5 ай бұрын
I agree
@hazelqawamid Жыл бұрын
He's really happy because he made those equations 😭💗
@finrodf8442 Жыл бұрын
for the second you can use difference of squares
@BraddersVee2 жыл бұрын
For Q1, how do you know to choose 5 and 3 rather than 1 and 15 ?
@robertpearce83942 жыл бұрын
As the video states, it is a guess but an educated guess as 5,3 looks mote likely than 15,1. You can try 15,1 but the answer will be incorrect and time is wasted as this is a competition. If you apply this method to problem 3 you have choices of 32,1 or 16,2 or 8,4. I tried 8,4 first as it seemed most likely.
@w__a__l__e2 жыл бұрын
whats annoying is ive been subbed for a while but literally never see your work in my feed.. my brain has been missing this
@sayanjasu2 ай бұрын
This is the youtube channel Steven He's dad wishes he ran.
@@blackpenredpen Just as WFA gives it. The point is that extracting x²-x+1 requires finding the roots of x¹⁰-x⁵+1.
@charlesgoodson57746 ай бұрын
Sir, I was wondering, if you have a quartic polynomial with integer coefficients, is it always factorable into the product of two quadratic polynomials (even if all roots are complex OR irrational real)? If so, will the coefficients in those quadratics be integers necessarily or might they be non-integer rational numbers?
@enjoywatchingyoutube33462 жыл бұрын
2:33 shoudnt that be -2 and -3 ? cuz X1+X2=-p ?
@mcguides91762 жыл бұрын
-2 and -3 are the roots but this is dealing with factorizing the polynomial is (x-(-2))(x-(-3)) so when the x coefficient is positive the roots are negative but when you factorize it the negative negative becomes a positive
@FreemonSandlewould2 жыл бұрын
Regarding the BMT are the scores race adjusted? Or is it fair where ONLY the work counts?
@blackpenredpen2 жыл бұрын
I am not sure how they will score this time. You can find their contact info in the description
@Bplayer11132 жыл бұрын
Hello, I am new subscriber. I saw your graduation picture and was wondering at what age did you graduate from UC Barkley😊
@brendanconnelly10752 жыл бұрын
I run the math club at Acalanes high school in lafayette. We will be there!
@blackpenredpen2 жыл бұрын
Excellent!!! See you there!!!
@hardeepsinghg132 жыл бұрын
Will you conduct any online competition in future for students not in your country? Like India Pls try doing it some day, for Grade 12 students
@blackpenredpen2 жыл бұрын
There’s a BMT online. U can check that out. 😃
@dandark55542 жыл бұрын
I'm sorry to be stupid but i don't get one thing: Why didn't you consider 15 as 1x15 in the first method and went straight on 3x5?
@Sampreet.2 жыл бұрын
I guess one clue would be to look at the coefficients of the terms. They all have factors of 2 or 3 and 2 + 3 = 5 which is a factor of the constant term. These patterns suggest that it might be easier if we were to proceed with 3 * 5 instead of 1 * 15.
@pragyapathak39182 жыл бұрын
really great sir 🙏🏻😊
@davidbrisbane72062 жыл бұрын
I knew someday we'd be double crossed by blackpenredpen.
@greensalad_120511 ай бұрын
Can I do the cross method for cubic formula?
@jaii5955 Жыл бұрын
Double cross method is greatest method ever
@numericalcode2 жыл бұрын
Props for the donation!
@blackpenredpen2 жыл бұрын
Thank you.
@cathaywongkt2 жыл бұрын
Was a square sign missed in the 3rd (blue) expression in the thumbnail? (Sorry not sure if it is mentioned).
@blackpenredpen2 жыл бұрын
You are right! thank you.
@Madtrack2 жыл бұрын
Ty man. Ur top tier
@giselleformon2 жыл бұрын
Thank you sirrr :)
@subodhmeena99182 жыл бұрын
Great video...i liked it 👍👍
@jin_cotl5 ай бұрын
10:57 how did one (x^2-2x+4) go away? I’m so confused
@killpineapple2 ай бұрын
It was present in both parts so we're able to factor it out
@MathwithMarker2 жыл бұрын
That was perfect
@fabiangn80222 жыл бұрын
Buen video.👏🏽
@noelyvalisoarakotoarison7240 Жыл бұрын
Splendid, Thanks.. Can these methods become standard for resolving quartic polynomial
@dosedemaths Жыл бұрын
@jin_cotl5 ай бұрын
Absolutly
@christopertianzon32322 жыл бұрын
thank you sir!
@alham96562 жыл бұрын
For the first method, does the answer need to end up being (u +- C1)(u +- C2) where c1,c2 are just constants? Ive tried workijg backwords with the u's not being equal and it doesnt really work out well, but for every one of tried in the form of yours it seems to work !
@اشکانمحمدی-ز1ث5 ай бұрын
Very useful content
@ahmadsalehin83292 жыл бұрын
whoa i did this individully at home!!! 2:50
@alejrandom65922 жыл бұрын
What happened to the "main dish" video?
@vishalmishra3046 Жыл бұрын
*First Technique is not Generalizable* The first technique ONLY works when you predict the correct factors of the constant term. What if it is not an integer in the equation. What if its factors are not integers (e.g. 15 = 9 x 5/3). If the constant term has many factors (large N), then you will discover these issues after a very large number of attempts (Number of pairs of factors = N x (N-1) / 2 attempts). And then the same number of attempts with negative factors (e.g. 15 = -3 x -5). That's a lot of factor-pairs attempted just to eventually find that this technique will not work.
@MyOneFiftiethOfADollar Жыл бұрын
Excellent point which detracts from the viability of the technique, especially for large constant terms.
@EyeSooGuy Жыл бұрын
Hey there. Can you explain to us what tetration, pentation, hexation, etc is? 😈
@tomshimon Жыл бұрын
In the first method/problem how did you know how to split the 15?
@jin_cotl5 ай бұрын
Basically, never use 1 times 15 unless there is no other choice like 1 times 3 or something.
@tsaqifrizky52762 жыл бұрын
Imagine facing bprp in a math tourney you'd get smoked 10 different ways (with an elegant proof for each)
@afuyeas99142 жыл бұрын
The chad answer: Ferrari's method every single time
@NarenderKumar-ll6xg2 жыл бұрын
Sir find the factor of the equation X ^ 4 - 4 x cube + 8 x square minus 8 x + 4 equal to zero
my patreon halted because my cc expired. I'm going to fix that today!
@charlesbromberick42472 жыл бұрын
Mr. Burp is an absolute whiz!
@crazybanana02722 жыл бұрын
All the expo markers in the bottom right corner of the screen waiting for their turn to be used
@sajjadali-taeminsteppedony84342 жыл бұрын
Equation zaddy is back 😶
@user-rx3iv7bl6b2 жыл бұрын
Why we factored 15 as 3 into 5 not 15 and 1
@mahhar312 жыл бұрын
I am from India
@user-et1up1nk9k2 жыл бұрын
I am not from India
@chessematics2 жыл бұрын
Me too but no one asked bro
@guywhoasked60462 жыл бұрын
@@chessematics I did 🗿
@Aditya-zs8hz2 жыл бұрын
Pucha kisi ne
@mahhar312 жыл бұрын
@@user-et1up1nk9k Where are you from?
@VardiIntegral Жыл бұрын
Is it true: The method which is applicable to factor a 4 degree polynomial is depend upon the way i represent it to the world.🎉🎉
@michaelbaum6796 Жыл бұрын
Great👍
@mantasr3 ай бұрын
Double-cross method? Treacherous.
@muhammedrehaan5750 Жыл бұрын
Thank u sir but my brain popped😅
@dosedemaths Жыл бұрын
@glinzaglinza79172 жыл бұрын
Please do some lebesgue integrals
@hydropage28552 жыл бұрын
NO, PLEASE DONT
@glinzaglinza79172 жыл бұрын
@@hydropage2855 haha just don't watch it 😅
@lucasmontec Жыл бұрын
The cross method gives you a right result... This means that the double-cross method actually screws you up? (Haha)
@user-et1up1nk9k2 жыл бұрын
🙂
@Happy_Abe2 жыл бұрын
How’d we know the first one wasn’t a product of cubic and linear instead of two quadratics
@ultimatedude56862 жыл бұрын
Any cubic can be factored as a linear term and a quadratic term. If you have a linear term times a cubic, you can convert that to two linear terms times a quadratic. If you multiply the linear terms you get the original polynomial factored in terms of two quadratics. Therefore, all quartics can be factored as two quadratics.
@Happy_Abe2 жыл бұрын
@@ultimatedude5686 that’s true yeah thanks! This is because all cubics have at least one real solution I forgot about that