4 - Continuity in metric spaces

  Рет қаралды 2,282

Frank Swenton

Frank Swenton

Күн бұрын

This video continues the series, discussing continuity, first for functions on the real line, then in general metric spaces. It follows the top half of the eighth page of my course handouts, corresponding to the main concept in Chapter 4 in Carothers.
This video moves quickly (and has a lot of content)! Please rewind, rewatch, and/or slow the playback speed as necessary---once the whole thing makes sense in real time, you're in pretty good shape with the basic concepts!
Here's the link to the "Functions and Graphs" video: • Functions and Graphs

Пікірлер: 7
@Deprisol
@Deprisol 2 жыл бұрын
My dude just made a espectacular, intuitive yet rigorous demonstration of Continuity and still hasn’t hit 400 views
@frankswenton3177
@frankswenton3177 2 жыл бұрын
Thanks! No idea how to get into the algorithms. :)
@jeonghoonchoi8175
@jeonghoonchoi8175 7 ай бұрын
Hello, really appreciate these videos. Was just wondering if the next vid on properties of metric spaces ever published?
@frankswenton3177
@frankswenton3177 7 ай бұрын
Oh...this all started during COVID until I couldn't keep up with the class schedule, and I sort of forgot about it since then. Maybe I should put it on my to-do list! 😊
@jeonghoonchoi8175
@jeonghoonchoi8175 6 ай бұрын
⁠@@frankswenton3177 thank you 🙏
@googaDEV
@googaDEV Жыл бұрын
Why the distortion of the ball in the Domain?
@frankswenton3177
@frankswenton3177 Жыл бұрын
If I'm understanding your question properly, the issue is that we have a nice round epsilon-ball in the codomain and another delta-ball in the domain, but the function definitely need not exactly map a ball to a ball. In general, a mapping (continuous function) could distort shapes in all sorts of ways, meaning that what starts out looking like a regular delta-ball in the domain could map to a quite different shape in the codomain. In the same way, the preimage of a regular ball in the codomain could be distorted as well. The notion of continuity can be expressed in terms of open balls, but it's always about something being either contained in or containing an open ball---those images are preimages relate to open balls, but they themselves need not _be_ open balls. I hope that helps a bit!
Continuity in Topology
17:36
Dr Peyam
Рет қаралды 11 М.
2 - Sequences in metric spaces
12:56
Frank Swenton
Рет қаралды 2,7 М.
Война Семей - ВСЕ СЕРИИ, 1 сезон (серии 1-20)
7:40:31
Семейные Сериалы
Рет қаралды 1,6 МЛН
БОЙКАЛАР| bayGUYS | 27 шығарылым
28:49
bayGUYS
Рет қаралды 1,1 МЛН
진짜✅ 아님 가짜❌???
0:21
승비니 Seungbini
Рет қаралды 10 МЛН
Open Sets in Metric Spaces
12:35
dafdasg1
Рет қаралды 5 М.
Weird notions of "distance" || Intro to Metric Spaces
12:31
Dr. Trefor Bazett
Рет қаралды 94 М.
What are Metric Spaces and Limit Points?
10:07
ThatMathThing
Рет қаралды 2,1 М.
Functional Analysis 12 | Continuity
12:11
The Bright Side of Mathematics
Рет қаралды 27 М.
Pointwise and Uniform Convergence Visualized
7:51
CModGamma
Рет қаралды 72 М.
Taste of topology: Open Sets
23:48
Dr Peyam
Рет қаралды 28 М.
The Feigenbaum Constant (4.669)  - Numberphile
18:55
Numberphile
Рет қаралды 1,5 МЛН
Continuity versus Uniform Continuity
10:29
The Math Sorcerer
Рет қаралды 50 М.
What is Uniform Continuity?
6:23
Dr Peyam
Рет қаралды 31 М.
Война Семей - ВСЕ СЕРИИ, 1 сезон (серии 1-20)
7:40:31
Семейные Сериалы
Рет қаралды 1,6 МЛН