Yes, it is really a difficult concept to grasp when you see it first time. Thank you for explaining it so clearly Dr. Peyam!
@Dudecar773 жыл бұрын
For sure, one of the harder concepts of analysis for me to grasp. Nonetheless, I think you helped me understand what it means by uniform.
@Mathematics-with-MohsinRaja10 ай бұрын
Mee too but I actually not fully grasp the concept
@carlosvargas29073 жыл бұрын
Cada vídeo tuyo confirma mi ignorancia. Un gran saludo, profesor!
@theunknownscientist32493 жыл бұрын
One of my favourite concepts of analysis, the epsilon-delta formalism is just so beautiful.
@tomoki-v6o3 жыл бұрын
epsilon plus delta plus variants
@Jessica-kv2ob2 жыл бұрын
I always understand everything with your videos !!!! Thank you so much Dr. Peyam ❤️❤️❤️
@adeelakhtar35409 ай бұрын
You’re a superstar! Would appreciate it you can explain some concepts of differential geometry, like covariant derivatives, connections, geodesics, etc.
@HimanshuKumar-zh7zx4 жыл бұрын
Explained very well !
@yoav6133 жыл бұрын
I wonder if this continuity series will be continuous until the end or you will break it with unrelated video
@drpeyam3 жыл бұрын
It will be uniformly continuous until the end 😉
@yoav6133 жыл бұрын
@@drpeyam 😄😃😅
@tinyshiny1073 жыл бұрын
This is awesome! I'd love to hear you explain uniform convergence of a sequence :)
@taehyunahn1786 Жыл бұрын
This is a great introduction to uniform continuity, thanks Dr. Peyam!!
@rikthecuber3 жыл бұрын
(Just asking) Hey Dr. Peyam, would you mind solving the Schrodinger's eqn? I know its more of a Physics concept but it requires partial differential eqns. I just learned laplace transform for ODEs. Just need a demonstration for PDEs. Hope it reaches to you.
@drpeyam3 жыл бұрын
Check out my video on separation of variables (for the heat equation), it’s very similar
@Monirul25123 жыл бұрын
Your videoes are very good .do more videos sir .thank you
@noamyakar8554 Жыл бұрын
So helpful, this makes so much sense!
@mudkip_btw3 жыл бұрын
Actually the square root example being uniformly continuous is not very surprising when you consider that it is not singular at x=0 and its derivative is monotonically decreasing. Nice video.
@wtt274 Жыл бұрын
Thank you sir for your very clear explanations in this great video ❤!
@haniaherbi28573 жыл бұрын
Sooo simply and well explained TNX 💯
@richardhambel6482 жыл бұрын
Lost me at 1:15. I have no clue where delta came from.
@drpeyam2 жыл бұрын
Watch the playlist
@dk74723 жыл бұрын
Dang where were you in my analysis 1 class
@colleen94933 жыл бұрын
Haha lol
@225vikrant3 Жыл бұрын
5:46 did u mean that even if sometime delta depend on xnot is can be uniformly cont. But if it does then didn't it violated the def of uniform cont.
@drpeyam Жыл бұрын
Exactly
@phukinho3 жыл бұрын
If f is UC on some interval, does it imply that f' is bounded on this interval? Thanks for your great videos ;)
@drpeyam3 жыл бұрын
I don’t think so, I think you can construct something like x sin(1/x) or something
@jonko822 жыл бұрын
Very interesting. So if I am understanding this correctly the function itself does not necessarily need to be bounded on the interval in question but the magnitude of the slope (derivative) must be bounded in order for a function to be uniformly continuous on said interval.
@rikthecuber3 жыл бұрын
Hey I have 1 request. I came upon Descarte's Law of sign in my equations chapter in my maths reference book of class 11. But the derivation is not given there. Can you show it in a video?
@dgrandlapinblanc2 жыл бұрын
Ok. Thanks.
@tomascernansky3960 Жыл бұрын
thank you, thank you.
@yukijenkins86 Жыл бұрын
The questions were so accurate aahahha
@Eis461 Жыл бұрын
Great
@Akihikoo_3 жыл бұрын
I wish you were my teacher!
@GhostyOcean3 жыл бұрын
Would you consider doing some abstract algebra? I believe your insights would be really useful, you have helped me so much with analysis and linear algebra.
@drpeyam3 жыл бұрын
Highly doubt it, sorry
@GhostyOcean3 жыл бұрын
@@drpeyam ah ok. I'm leaning that way too, but I haven't really explored some of the areas I'm intrigued by yet. Anyways, thank you for all your videos! You do a great job
@zaheercoovadia47453 жыл бұрын
@@drpeyam Do you consider yourself an analyst? This was an awesome video btw - really helped cement a concept that had never exactly clicked for me before
@sumittete28048 ай бұрын
If a function is uniformly continuous on a closed interval, could we refine the definition of uniform continuity by replacing the condition |x-y| < δ and |f(x) - f(y)| < ε with |x-y| ≤ δ implying |f(x) - f(y)| ≤ ε ?
@3r3nite983 жыл бұрын
Ooh awesome,also Syber as always has a premiere so join if u can.
@kanewilliams16533 жыл бұрын
Please tell us a story about your beautiful handwriting. Did you ever train it? I'm a math teacher in awe of what I see, and it's very inspiring and beautiful!
@drpeyam3 жыл бұрын
Awwww thanks so much!!! I went to a French school, where they taught me cursive, but they can’t read that in the US, so I have to write in capital letters. The neatness comes from my French background though
@colleen94933 жыл бұрын
@@drpeyam actually we can read cursive here, I mean at least we were taught it in my school
@kanewilliams16533 жыл бұрын
@@drpeyam you're welcome, I should spend a few years in France then, if these are the results =)
@dcas78063 жыл бұрын
Let's go to the N-dimensional functions!
@Maraq369 Жыл бұрын
Why use y instead of x_0 ?
@drpeyam Жыл бұрын
Because we’re not fixing a point x0, it works for any points x and y
@Maraq369 Жыл бұрын
@@drpeyam so x and y are points instead of inputs and outputs, f of a point instead of f of an element in the domain? it can be written as f(p) and f(p_0) where p=x,y and p_0 = x_0,y_0 ? instead of f(x) and f(y) as in the video
@aneeshsrinivas90882 жыл бұрын
What do you mean, continuous in exactly the same way?
@aneeshsrinivas90882 жыл бұрын
I still dont get how this has anything to do with that
@drpeyam2 жыл бұрын
You can choose the same delta for every x, it doesn’t depend on where you are
@aneeshsrinivas90882 жыл бұрын
@@drpeyam so its uniform in terms of the detla choice. by the way hey if continuity means that changing x by just a little bit, our function shouldn't change by all that much, is there anything like this for uniform continuity
@aneeshsrinivas90882 жыл бұрын
@@drpeyam by the way, in these proofs, can you physically specify your epsilon, like say epsilon=1 right off the bat or something. i think the negation of this statement should tell us yes.
@timetraveller28183 жыл бұрын
hey present human i am back again time travelling in the 4th dimension quick reminder : that there's this Aash syed guy who thinks time travelling is not real Don't believe him! he does not know the theory of relativity and and the properties of the 4th integral !