I love the fact that he says "thanks for watching" at the start of the video
@MrCigarro503 жыл бұрын
Genial, preciosa y precisa demostración. Gracias por su excelente video.
@bronkolie3 жыл бұрын
I figured it out by myself at around 3:36. All the other videos never really explained how the formula they got actually correlated to to the area of a parallelogram. When I tried to derive it on my own I ended up trying to use trigonometry and Pythagoras, to little success. Thanks for the explanation!
@agustinsaenzanile19002 жыл бұрын
So nice that the matematics is after the notation, beautiful
@FlydingVent92962 жыл бұрын
Great video, i wanna see something like this for 3x3 matrices
@kee24132 жыл бұрын
Thanks a lot for your video that make determinant (mathematics)became more visual!
@mohammedal-haddad26523 жыл бұрын
Geometry-based proofs are my favorite. Thank you very much.
@route66math773 жыл бұрын
Very nice, an absolute classic!
@andrewthompson94463 жыл бұрын
That’s was quite beautiful air! Thanks for showing that :)
@friedrichfreigeist32923 жыл бұрын
Lustig, dass ich sowas schon in der Realschule machen durfte. Dabei kommt Lineare Algebra erst in der Uni richtig dran. Nur damals konnte man eben nichts vonwegen Vektorräume und so machen. Man hat die Determinantenformel lediglich benutzt.
@arnavtete77933 жыл бұрын
True true
@MrRyanroberson13 жыл бұрын
funny enough 6:00 this follows into vector mathematics! if you label point (a,b) = A and point (c,d) = B, then you have reinvented the formula for the signed area of the parallelogram spanned by two arbitrary vectors, AxB. and this works in general for any lines since you would first shift the bottom-left vertex to the origin before doing this calculation
thanks Doc see also my comment on your sec^2 integral with famous similar sec integration by Barrow , Newton's tutor so that Newton didn't invent calculus
@nicepajuju39003 жыл бұрын
Wow that was nice!!
@atahualpaarias18403 жыл бұрын
Cool demonstration and funny jokes, thanks!
@Byc8453 жыл бұрын
That's really cool!
@user-wu8yq1rb9t3 жыл бұрын
Hello Dear Dr Peyam It was so cool, thank you for sharing this with us.
@manoharsuthar46753 жыл бұрын
👍🏻Sir, excellent method .
@candychiuad3 жыл бұрын
How does this tie to the determinant?
@theproofessayist84413 жыл бұрын
This is sweet.
@ekueh3 жыл бұрын
Wonderful!
@chessematics3 жыл бұрын
Back to classroom!!!
@rarebeeph17832 жыл бұрын
so if you have a 2x2 matrix containing a, b, c, and d, then the determinant is just the area of any parallelogram with vertices at (0,0), (a,b), and (c,d)?
@drpeyam2 жыл бұрын
Yes, except it’s a signed area
@nidalapisme3 жыл бұрын
beautiful! ❤️
@huwpickrell12093 жыл бұрын
Super cool 😎
@rigoluna14913 жыл бұрын
Nice video as always. Could this method be used to find the determinant of a 3x3 and or a 4x4?
@drpeyam3 жыл бұрын
It would be harder since the 3x3 determinant has addition and subtraction
@رضامزوز-خ8ض3 жыл бұрын
Sir, I heard that if we take a square whose side length is 1 and start dividing it, then the two sides are calculated, then I find the result of 2, but when I reach infinity I find √2
@رضامزوز-خ8ض3 жыл бұрын
Which means that 1=√2😕
@two6973 жыл бұрын
What?
@calendar65263 жыл бұрын
Ah yes, nowadays, whenever I see a triangle and a parallelogram in the same parallels like that, I always refer to the Euclid's elements book 1 proposition 41 (if I'm not mistaken) about the matters.
@Leeanne7503 жыл бұрын
Interesting
@jabahalder74933 жыл бұрын
Linear lalgebra
@ChristopherEvenstar3 жыл бұрын
So good
@faizs96763 жыл бұрын
WoW !!!!!!
@theamazingworldofgusball18523 жыл бұрын
Is there some proof of formula for n×n matrix determinant?
@Batu1353 жыл бұрын
You mean Laplace Expansion?
@chessematics3 жыл бұрын
Nice one. Although each one is nice.
@antoniocampos97213 жыл бұрын
Good !!!
@eduardvalentin8303 жыл бұрын
can this be proven using the cross product?( |axb| )
@Whoeveriam2263 жыл бұрын
That would involve circular reasoning. Computation of ×prod by det is derived from the fact det gives area
@yoavlavy22433 жыл бұрын
@@d.l.7416 it can be visualized with Cavalieri's theorem, which I think is very intuitive.
@yoavlavy22433 жыл бұрын
@@Whoeveriam226 It is circular only if presented as you said, with the cross product deriving from determinant. That's how I've seen most sources go, like 3b1b's eola series. I think a much better way is to start with the cross product for vectors and then the determinant for matrices
@tgx35293 жыл бұрын
Cool!
@johnnisshansen3 жыл бұрын
you jumped over some details,
@drpeyam3 жыл бұрын
What?
@johnnisshansen3 жыл бұрын
@@drpeyam you have 2 parts of a triangle and claim they add up to half of a rectangle. You should explain why