This is a very straightforward question, you could just plug in 1 and get the answer aswell.
@MathBeast.channel-l9i27 күн бұрын
Alright 👍
@pizza856727 күн бұрын
@ but your way actually shows how you got it lol
@thundervolt9726 күн бұрын
@@pizza8567man the degree is 4 so there are 4 solutions to this equation not only 3 so
@CNunez-vn1hr28 күн бұрын
This is a typical four-terms polynomial. To find the solution in two steps, first factor by grouping and then use the zero-factor property to get the solutions. Assuming that you know how to factor the difference of two perfect cubes, you should be able to solve it in one minute. Btw, there is a double real-zero (x=1), and the two complex number zeros; i.e., four solutions or zeros matching the degree 4 of this polynomial. These complex zeros must be written in the standard form: a+bi. Hope this helps.
@CNunez-vn1hr28 күн бұрын
Happy new year!
@MathBeast.channel-l9i27 күн бұрын
Happy New Year Sir 🎈
@MathBeast.channel-l9i27 күн бұрын
Alright Boss Nice Approach 👍
@curiousityofmind28 күн бұрын
very esay question
@MathBeast.channel-l9i27 күн бұрын
Alright Boss
@walterwen297525 күн бұрын
China Math Olympiad Question: x⁴ - x³ - x + 1 = 0; x =? x⁴ - x³ - x + 1 = (x⁴ - x³) - (x - 1) = x³(x - 1) - (x - 1) = (x - 1)(x³ - 1) = 0 (x - 1)(x - 1)(x² + x + 1) = [(x - 1)²](x² + x + 1) = 0; x - 1 = 0 or x² + x + 1 = 0 x = 1, Double root or x = (- 1 ± i√3)/2 Answer check: x = 1: x⁴ - x³ - x + 1 = 1 - 1 - 1 + 1 = 0; Confirmed x = (- 1 ± i√3)/2: x² + x + 1 = 0, x² = - x - 1, x³ = - x² - x = 1, x⁴ = x x⁴ - x³ - x + 1 = x - 1 - x + 1 = 0; Confirmed Final answer: x = 1, Double root; x = (- 1 + i√3)/2 or x = (- 1 - i√3)/2
@Kosekans28 күн бұрын
Obviously you can split off (x-1) twice. The rest is straightforward.