The equation has two solutions integer. If we take b=na with n positive integer there is solutions for a and b integer with n=1,13. If n=1 a=b=26 and if n=13 a=14 and b=14*13. Then other solution is a+b=56.
@tassiedevil22006 сағат бұрын
While this presented an interesting way to show that (1+i*sqrt[3])/2 is the cube root of -1, it might have been quicker to represent it in complex polar form as exp[i*pi/3], and recognise that 7777 powers is exp[i *(7776+1) * pi/3] or exp[i*(1296*2*pi +pi/3)] so result is just exp[i*pi/3]. Admittedly, this does assume that one notices that (1+i*Sqrt[3])/2 is unimodular and recognises the 30-60-90 triangle to get the phase.
@RealQinnMalloryu413 сағат бұрын
(1+3/2)^3^4^3^4^3^4^3^4 (1+1/2)^1^2^2^1^2^2^1^2^2^3^2^2 (/1)^1^1^1^1^1^1^3^1^2 ()^3^2 ( x ➖ 3x+2).
@dolichakraborty602013 сағат бұрын
This isn't good bro what quality is this this question is so far from olympia level Olympiads are 100x tougher and you are putting olympiad in the thumbnail and a picture of einstein! this is as funny as worse your thumbnail is 😂😂😂
@MathBeast.channel-l9i13 сағат бұрын
Alright Boss 😔
@princejag19 сағат бұрын
Beautiful.
@MathBeast.channel-l9i17 сағат бұрын
Thankyou Boss 😊
@robynebeauty280419 сағат бұрын
Why 169 '
@MathBeast.channel-l9i17 сағат бұрын
To make perfect factors
@krzysztofbaus131119 сағат бұрын
Very elegant method.
@MathBeast.channel-l9i17 сағат бұрын
Many Thanks 👍 😊
@مهدیعمادی-غ5ب20 сағат бұрын
can you learn us sth about methamatics for example making a video about what is the imaginary number and how is the multiplication works on them.
@MathBeast.channel-l9i13 сағат бұрын
Sure 😊
@مهدیعمادی-غ5ب20 сағат бұрын
That one is perfect
@MathBeast.channel-l9i14 сағат бұрын
Thanks for sharing your precious feedback 🙂
@isaacwang63423 сағат бұрын
The expression involves raising to a non-integer power, which generally results in a complex number. Here's the breakdown: 1. is the square root of , approximately . 2. Raising to a non-integer power is defined in the complex plane and involves Euler's formula: (-1)^x = e^{i \pi x} where . 3. Substituting : (-1)^{\pi^{0.5}} = e^{i \pi (1.77245385091)} Simplifying: e^{i \pi (1.77245385091)} = e^{i (\pi + 0.77245385091\pi)} = e^{i \pi} \cdot e^{i (0.77245385091\pi)} Since : (-1)^{\pi^{0.5}} = -1 \cdot e^{i (0.77245385091\pi)} This gives a complex result, with magnitude 1 and an angle of in radians.
@Ctrl_Alt_SupКүн бұрын
Can we find a general strategy to solve 1/a+1/b=k which is a+b?
@arekkrolak6320Күн бұрын
Is this video a joke? Taking 7th root gives you 7 different complex solutions on the left side and 7 on the right side of the equation. So the guy arbitrarily chose 1 if them ignoring remaining 48 and claims it a solution :)
@ByzasTT9 сағат бұрын
How Oh and Can I ask one more question? In ГmГmГm=128 Ismt it M^1/2*m^1/2*m^1/2=128? And by indices law multiplication is addition so (M^3/2)=128 When you square it'll be M^3=128 Why did only one root get erased Am I missing something?
@charlesrowe310Күн бұрын
it might be faster to convert the square roots to exponents & distribute. Then add them up. You are quickly left with m^(7/8) = 2^7 fraction rule to rewrite will get you 8th root of m = 2 then you can be left with m = 2^8 Either way, it was an excellent video. thank you for it!
@MaheshKhatri-in6bcКүн бұрын
m=256
@scorewithdeepti8972Күн бұрын
Nice 🎉
@scorewithdeepti8972Күн бұрын
Nice 🎉
@ThatWasAMegaHitКүн бұрын
why is it not 78? 1 2 3 1 -- + -- = -- = -- 39 39 39 13 so 39 + 39 = 78??? Did this video show a minimum solution or am I just getting frustrated over nothing?
@jamesharmon4994Күн бұрын
m^(7/8) = 2^7 Taking 7th root both sides m^(1/8) = 2 Taking both sides to the 8th power m = 2^8 aka 256
@MathBeast.channel-l9iКүн бұрын
@@jamesharmon4994 Nice Approach 😊
@mehdizangiabadi-iw6tnКүн бұрын
e^1*e^2=e^3
@RealQinnMalloryu4Күн бұрын
2^7 2^7^1 2^1^1 2^1 (m ➖ 2m+1).
@christopherrattew8591Күн бұрын
This looks crazy. The answer is simply -i and it is 5 seconds of mental arithmetic. Keep the Argand diagram in mind.
@MathBeast.channel-l9iКүн бұрын
@@christopherrattew8591 😔
@subhro1019Күн бұрын
This can be further expand using De Morvier's theorem
@AvikDey-z6yКүн бұрын
√(m) √(m) √(m) =128 Or m√(m) √(m) =128*128 Or m^2*m*m√m=128^4 Or m^2×m^2×√m=128^4 Or( m^4) ^2×(√m) ^2= 128^4 Or m^9=2*2*2*2*2*2*2*2*2 =2^9 Now m=2
@MathBeast.channel-l9iКүн бұрын
@@AvikDey-z6y Can you please check it out to verify?
@prollysineКүн бұрын
128= 2^7 , the m power , 1/2 , 3/2 , 3/4 , 7/4 , 7/8 , m^(7/8)=2^7 , / ()^(8/7) , m=(2^7)^(8/7) , m=2^8 , m=256 ,
x^3 = e^i2nπ x = e^(i2nπ/3), n = 0, ±1 x1 = 1 x2 = cos -2π/3 + i sin -2π/3 = -1/2 - i√3/2 x3 = cos 2π/3 + i sin 2π/3 = -1/2 + i√3/2 or x^3 - 1 = 0 (x - 1)(x^2 + x + 1) = 0 x = 1, (-1 ± √(1 - 4))/2 = (-1 ± i√3)/2
@rob8762 күн бұрын
3^x = 6 x = ln 6 / ln 3 = 1 + ln 2 / ln 3
@rob8762 күн бұрын
e^iπ/4 + e^-iπ/4 = cos π/4 + i sin π/4 + cos -π/4 + i sin -π/4 = 2 cos π/4 = 2/√2 = √2
@rob8762 күн бұрын
x^3 = e^(iπ(1/2 + 2n)) x = e^(iπ(1/6 + 2n/3)), n = 0, -1, 1 x1 = cos π/6 + i sin π/6 = √3/2 + i/2 x2 = cos -π/2 + i sin -π/2 = -i x3 = cos 5π/6 + i sin 5π/6 = -√3/2 + i/2
@rob8762 күн бұрын
divide both sides by b: a/b + 1 = 5√(a/b) let √(a/b) = u, thus u > 0 u^2 - 5u + 1 = 0 u = (5 ± √21)/2 a/b = (5 ± √21)^2/4 = (23 ± 5√21)/2
c/a = 2, c/b = 3 c = 2a = 3b b = 2a/3 a + b + c = a + 2a/3 + 2a = 11a/3 but ab = 200 => 2a^2/3 = 200 => a^2 = 300 => a = ±√300 => a + b + c = ±11√300/3
@rob8762 күн бұрын
(1 + i)√a = 12 √a = 12/(1+i) = 6(1-i) a = 36(1 - 2i - 1) = -72i similarly (1+i)√(-a) = 12 leads to -a = -72i so a = ±72i
@rob8762 күн бұрын
I really liked that you gave 2 methods. Your first method would have been the one most people would start with. The second method was beautiful.
Downvoted for wasting my time. Write faster or speed up the video.
@samsonchan67422 күн бұрын
There is a logically mistake in the Lets Verify. Each case you write first LHS = RHS i.e. ( 2/2 · 2/2 = 2/2 · 2/2 ... ) If so, then you do not need to show the steps, because you have shown us both sides are equal. Therefore, you should calculate LHS and then calculate RHS and then show us both sides are equal. Don't prove or verify both sides at the same time. then RHS
@mathwithabdulloh2 күн бұрын
❤❤❤❤❤
@MathBeast.channel-l9i2 күн бұрын
Thanks 😊
@franklinbrown56252 күн бұрын
A few more examples would be very helpful. Thank you
@MathBeast.channel-l9i2 күн бұрын
Okay 👍 Welcome 🤗
@christianm49062 күн бұрын
You're just rewriting the quantity into a more complex expresion. It's absurd!
I was amazed he was able to get an answer to an equation with two unkowns then I realized there were infinite solutions. Nice pencil moving though.
@MathBeast.channel-l9i2 күн бұрын
Thanks for sharing your precious feedback 🙂
@srinivasch-re2oq3 күн бұрын
Very simple, 6^x (36 -1) = 60 6^x = 60/35 = 12/7 Apply logerthms then find x value. xlog6 = log(12/7) We should know logerthm, log inverse values from 1 to 20 while preparing for such exams.
@srinivasch-re2oq3 күн бұрын
We can do with simple multiplications and divisions.
@MathBeast.channel-l9i3 күн бұрын
@@srinivasch-re2oq Alright Boss 🙂
@nickelbriand3 күн бұрын
The golden Ratio ! Again this one ! ( in fact the logarithm of golden ratio ) . So i guess we can solve any exp(x) + A * exp(2x ) = exp(3x) with A integer , and we ll find as solution the logarithm of metallic number ( silver ratio , etc .. ) ; a kind of relation with . exp(x) + A * exp(2x ) = exp(3x) and the sequences u(n+1) = A u(n) + u(n-1) . Thank you for the share .
@MathBeast.channel-l9i3 күн бұрын
Thankyou too for your kind suggestion 😊
@Handling-f3w3 күн бұрын
With this account, it does not matter if the parameters a and b are changed a=14 b=184 equally a=184 b=14