Input 49/16^2 + 49/32^2 + 49/64^2 = 1/2^2 + 1/32^2 + 1/64^2 Result True Left hand side 49/16^2 + 49/32^2 + 49/64^2 = 1029/4096 Right hand side 1/2^2 + 1/32^2 + 1/64^2 = 1029/4096
@AmirgabYT21852 ай бұрын
x=2
@michaeldoerr58102 ай бұрын
The answe is x= 2. Allow me to make an observation: at 7:50 mark, instead of aubteacting deom the LHS, you could just cancel out the a^2+a+1 with knowledge that it is irreducible over R, and subtract 49 to a^3-a^2+1. After that it is just reducibg that polynomial to difference between a cube and a square. That is just my thought.
@RyanLewis-Johnson-wq6xs2 ай бұрын
49/16^2+49/32^2+49/64^2=1/2^2+1/32^2+1/64^2 x=2 final answer
@Quest36692 ай бұрын
X= 2
@ManojkantSamal2 ай бұрын
(49/2^4x)+(1/32^x)+(48/32^x)+(1/64^x)+(48/64^x)=(1/2^x)+(1/32^x)+(1/64^x) So, (49/2^4x)+(48/2^5x)+(48/2^6x)=(1/2^x) So (48/2^4x)+(48/2^5x)+(48/2^6x)=(1/2^x)-(1/2^4x) So 48{(1/2^4x)+(1/2^5x)+(1/2^6x)}={(2^3x)-1}/(2^4x) 48[{(2^2x)+(2^x)+1}/(2^6x)]={(2^3x)-1}/(2^4x)
@RashmiRay-c1y2 ай бұрын
Let a=1/2^x. Then 48a^6+48a^5+49a^4-a=0. a is not zero. So, 48a^5+48a^4+49a^3-1=0 > (4a-1)(a^2+a+1)(12a^2+3a+1)=0. The only real solution is a=1/4 > x=2.
@michaeldoerr58102 ай бұрын
Just one question did you use synthetic division??? I have noticed that this simple procedure has been posted on two or three @infyGyan problems before going live. Do you also use Wolfram???