A Floor Value Equation (x^2-⌊x⌋-2=0)

  Рет қаралды 13,321

SyberMath

SyberMath

Күн бұрын

Пікірлер: 73
@aashsyed1277
@aashsyed1277 3 жыл бұрын
floor equations are hands down my most favorite.
@MathElite
@MathElite 3 жыл бұрын
I love floor equations :DD
@leickrobinson5186
@leickrobinson5186 3 жыл бұрын
Me too! :-D
@MushookieMan
@MushookieMan 3 жыл бұрын
Notice that x^2-⌊x⌋-2 ≥ x^2-x-2. Factoring the RHS, we can easily establish invervals for x and x^2. Then try each case. It's a bit hand-wavy, I know.
@SyberMath
@SyberMath 3 жыл бұрын
You're right! Good thinking!
@arshsverma
@arshsverma 3 жыл бұрын
I did it with just replacing x with n+epsilon, and you get (n+epsilon)^2-n-2=0, now you know you have 0
@carloshuertas4734
@carloshuertas4734 3 жыл бұрын
Another great explanation, SyberMath! I only had 1 solution to that math problem. I never knew about floor problems in math until you told me. Thanks!
@tonyhaddad1394
@tonyhaddad1394 3 жыл бұрын
Awesome , now im familiar with floor function , they are so important and fun !!!!
@aashsyed1277
@aashsyed1277 3 жыл бұрын
i love floor equations so much!!!!!!!!!!!
@tonyhaddad1394
@tonyhaddad1394 3 жыл бұрын
4:26 in fact you can call n is positive since in this case x=sqrt(n+2) >=0 so if x >=0 then floor(x) >= 0 floor(x)= n
@andreasavraam6898
@andreasavraam6898 3 жыл бұрын
Actually it's not that we can say that,but we HAVE to say that,basically what he did is wrong if n isn't non-negative. For example if n=-2, then -2=n0=n+2,so it would have been better not to use n,but |n| instead since we have the inequality for both sqrt(n+2) and -sqrt(n+2), that would have lead to the same answers and actually be correct.
@77Chester77
@77Chester77 3 жыл бұрын
A quadratic equation with three solutions, nice :-)
@antoniopedrofalcaolopesmor6095
@antoniopedrofalcaolopesmor6095 3 жыл бұрын
For x integer, [x]=x, so the roots of x^2-x-2 are also solutions for the given floor value equation. So we already have solutions x=2 and x=-1. Note that x^2-[x]-2 >= x^2-x-2. Since for x 2 we have that x^2-x-2 > 0, so x^2-[x]-2>0 and there are no solutions less than -1 or greater than 2. We just have to still look for solutions in the intervals (-1,0) , [0,1) , [1,2) and we're done.
@alexminsky1
@alexminsky1 3 жыл бұрын
A more straightforward method is to plot x^2 and [x]+2 and see the three solutions.
@aahaanchawla5393
@aahaanchawla5393 3 жыл бұрын
Or plot y = x² - floor(x) - 2
@alexminsky1
@alexminsky1 3 жыл бұрын
@@aahaanchawla5393 Yep, that definitely works, but I guess for most folks, it’d be much easier to plot x^2 and [x]+2 separately and looking for the intersections there.
@aayushshende1943
@aayushshende1943 3 жыл бұрын
X lies in [-1 , 0] to [1,2] . I solved it as a regular quad eqn and then found it intervals by using how the floor func works.
@davidseed2939
@davidseed2939 3 жыл бұрын
here’s my way. [_x_] is an integer, so is 2 , so x^2 must be an integer, also x^2 non-negative. So, we can just go through all the values of x^2 and see whether [_x_] and x^2 are compatible. x^2 …..:……… 0 , 1 , 2 , 3 , 4 , 5 x^2-2=[_x_] -2 , -1 , 0 , 1 , 2 , 3 x"…………………* , -1 , * , 1.73, 2 , *(sqrt(5)=2.23) * indicates that there is no value x^2 such that +-sqrt(x^2) = x^2-2. since x^2 -2 rises faster than x once we have x^2-2>[_x_] then there will be no further solutions. So x={ -1, sqrt(3),2}
@242math
@242math 3 жыл бұрын
you handled this floor equation very well. great job bro
@SyberMath
@SyberMath 3 жыл бұрын
I appreciate it, man! 🤗
@markobavdek9450
@markobavdek9450 3 жыл бұрын
Floor equations are like falling down the stairs 😆
@mrhatman675
@mrhatman675 3 жыл бұрын
Hahahahahahahahaha quite literally
@mathsandsciencechannel
@mathsandsciencechannel 3 жыл бұрын
Great video sir. Love that ♥️♥️♥️♥️
@aashsyed1277
@aashsyed1277 3 жыл бұрын
heelo
@nicogehren6566
@nicogehren6566 3 жыл бұрын
nice question sir thanks
@SyberMath
@SyberMath 3 жыл бұрын
You're welcome!
@gmutubeacct
@gmutubeacct 3 жыл бұрын
Thanks for posting this. Why did you not work on the OR part of the 2 inequalities you defined at 3:46? It turns out that it would not give you any additional solutions. But, don't you have to work on that for thoroughness? Thanks
@elgalvin
@elgalvin Жыл бұрын
Where from did you get -1
@comingshoon2717
@comingshoon2717 3 жыл бұрын
hermosa solución
@luiscrispinvargas3061
@luiscrispinvargas3061 4 ай бұрын
Creo que hay un pequeño error en la resolución, las respuestas sí están bien pero la parte donde resuelves n≤√n+2, estás elevando al cuadrado suponiendo que n sea positivo, lo cuál no lo tenemos la certeza, por lo que no podrías elevar al cuadro, ahí comienza lo que estaría mal la resolución. Espero haber ayudado, saludos desde Perú.
@3r3nite98
@3r3nite98 3 жыл бұрын
We are currently in the 1st Floor rn. Also I bet this will be a good video.
@pardeepgarg2640
@pardeepgarg2640 3 жыл бұрын
In search of Floor we lost our Ceiling 🤦🤦🤦
@SyberMath
@SyberMath 3 жыл бұрын
😁😂
@aashsyed1277
@aashsyed1277 3 жыл бұрын
lmao
@supramitra
@supramitra 3 жыл бұрын
Sorry,I couldn't join the premiere yesterday.But,I am watching now lol
@aashsyed1277
@aashsyed1277 3 жыл бұрын
Hello
@manojsurya1005
@manojsurya1005 3 жыл бұрын
Great problem, quadratic and floor are a good combo 😃
@SyberMath
@SyberMath 3 жыл бұрын
I agree!
@jimschneider799
@jimschneider799 3 жыл бұрын
@9:05 - since: x^2 - floor(x) - 2 >= x^2 - x - 2 and x^2 - x - 2 is greater than zero for all x < -1 or x > 2, the solutions to x^2 - x - 2 = 0 bound the interval in which solutions to the original equation may be found. In fact, for any positive integer k, if x^2 - floor(x) - k = 0 has any solutions, they will be in the closed interval bounded by the roots of x^2 - x - k = 0. This does raise the question: does x^2 - floor(x) - k = 0 have any roots when k is a positive integer such that the roots of x^2 - x - k = 0 are not integers? I'll reply to this if I find proof either way.
@jimschneider799
@jimschneider799 3 жыл бұрын
I found that x^2 - floor(x) - 1 = 0 has the solution x = sqrt(2), so the answer to the question I raised is "yes". Perhaps a more interesting question: does x^2 - floor(x) - k = 0 have any integer roots that are not also roots of x^2 - x - k = 0? Due to the fact that x^2 - floor(x) - k has a jump discontinuity at every integer value of x, I suspect the answer to that question is "no".
@jimschneider799
@jimschneider799 3 жыл бұрын
A moment's reflection gave me an even easier proof; assume that x^2 - floor(x) - k = 0 has an integer root, x=n, such that n is not also a root of x^2 - x - k = 0. Since n is an integer, then n = floor(n), so that n^2 - n - k = 0. But that means that n is a root of x^2 - x - k = 0, a contradiction. Therefore, any roots of x^2 - floor(x) - k = 0 that are not also roots of x^2 - x - k = 0 cannot be integers.
@vameza1
@vameza1 3 жыл бұрын
Nice!!!
@SyberMath
@SyberMath 3 жыл бұрын
Thanks!
@mathevengers1131
@mathevengers1131 3 жыл бұрын
I also made a floor video today. A coincidence.
@mathunt1130
@mathunt1130 3 жыл бұрын
One of the first things you can see is that x=2 is an is a solution...
@crykoh4082
@crykoh4082 3 жыл бұрын
Nice
@SyberMath
@SyberMath 3 жыл бұрын
Thanks
@aishbgm5743
@aishbgm5743 3 жыл бұрын
once explain factorial in floor like [x/2!]
@leecherlarry
@leecherlarry 3 жыл бұрын
compi finds three real solutions heh: *Solve[x^2 - Floor[x] - 2 == 0, x, Reals]*
@ςγτε
@ςγτε 3 жыл бұрын
what is compi?
@leecherlarry
@leecherlarry 3 жыл бұрын
@@ςγτε computer (software)
@ςγτε
@ςγτε 3 жыл бұрын
@@leecherlarry so you are using Wolfram language (☉。☉)!
@leecherlarry
@leecherlarry 3 жыл бұрын
@@ςγτε yeah me just beginner level. it's a beautiful language though 🙋
@rssl5500
@rssl5500 3 жыл бұрын
Interesting ..
@SyberMath
@SyberMath 3 жыл бұрын
Glad you think so!
@illuminati5676
@illuminati5676 3 жыл бұрын
Hey,SyberMath can we solve this in this way 31¹
@antoine5571
@antoine5571 3 жыл бұрын
Now I know how to kill those equations thanks
@aashsyed1277
@aashsyed1277 3 жыл бұрын
How can you write syber's emoji?
@antoine5571
@antoine5571 3 жыл бұрын
@@aashsyed1277 maybe because I'm member
@SyberMath
@SyberMath 3 жыл бұрын
Because he is a member 😉
@aashsyed1277
@aashsyed1277 3 жыл бұрын
@@SyberMath can you write it? if you can then how? if you are not a member of yourself!
@ivansakovich7653
@ivansakovich7653 3 жыл бұрын
Почему не решили два двойных неравенства?
@TheodoreLong1995
@TheodoreLong1995 3 жыл бұрын
Can you calculate x^i=?
@ganda3454
@ganda3454 Жыл бұрын
(x-2)(x+1)
@Germankacyhay
@Germankacyhay 3 жыл бұрын
👍
@threstytorres4306
@threstytorres4306 3 жыл бұрын
Let X is a Non-Decimal Number X^2 - X - 2 = 0 Using the Quadratic Formula We have X is equal to: 2 and -1
@SyberMath
@SyberMath 3 жыл бұрын
What about non-integers?
@montynorth3009
@montynorth3009 3 жыл бұрын
I get the solution of x being equal to 2 or -1 which I calculated using the formula for solving quadratic equations. I don't know about the square root of 3 and also not being an integer.
@mustafizrahman2822
@mustafizrahman2822 3 жыл бұрын
x=plus minus 2
@hongkongsmartboy
@hongkongsmartboy 3 жыл бұрын
Divided into 2 cases: 1. x >=0, |x| = x 2. x
@rafiihsanalfathin9479
@rafiihsanalfathin9479 3 жыл бұрын
Floor and absolute value is not the same thing
@aashsyed1277
@aashsyed1277 3 жыл бұрын
@@rafiihsanalfathin9479 he/she thought that by "floor" the absolutele value |
A Quick and Easy Problem on Exponential Expressions
4:22
SyberMath
Рет қаралды 116 М.
A QuinVigintic Equation (A 25K Special!)
12:52
SyberMath
Рет қаралды 36 М.
Can You Find Hulk's True Love? Real vs Fake Girlfriend Challenge | Roblox 3D
00:24
Solving a Quadratic Floor Equation
13:28
SyberMath
Рет қаралды 21 М.
An Interesting Floor Equation from Czech Republic
12:45
SyberMath
Рет қаралды 12 М.
The famous exponential equation 2^x=2x (ALL solutions)
10:28
blackpenredpen
Рет қаралды 238 М.
A floor value equation
12:25
SyberMath
Рет қаралды 8 М.
Solving a Floor within Floor Equation
8:26
SyberMath
Рет қаралды 13 М.
Can We Solve A Transcendental Equation 😁
10:11
SyberMath
Рет қаралды 3,4 М.
Imaginary numbers aren't imaginary
13:55
Ali the Dazzling
Рет қаралды 22 М.
Why No Polynomial Can Generate Prime Numbers
13:31
Wrath of Math
Рет қаралды 14 М.
a good place for a floor equation.
10:35
Michael Penn
Рет қаралды 27 М.