Notice that x^2-⌊x⌋-2 ≥ x^2-x-2. Factoring the RHS, we can easily establish invervals for x and x^2. Then try each case. It's a bit hand-wavy, I know.
@SyberMath3 жыл бұрын
You're right! Good thinking!
@arshsverma3 жыл бұрын
I did it with just replacing x with n+epsilon, and you get (n+epsilon)^2-n-2=0, now you know you have 0
@carloshuertas47343 жыл бұрын
Another great explanation, SyberMath! I only had 1 solution to that math problem. I never knew about floor problems in math until you told me. Thanks!
@tonyhaddad13943 жыл бұрын
Awesome , now im familiar with floor function , they are so important and fun !!!!
@aashsyed12773 жыл бұрын
i love floor equations so much!!!!!!!!!!!
@tonyhaddad13943 жыл бұрын
4:26 in fact you can call n is positive since in this case x=sqrt(n+2) >=0 so if x >=0 then floor(x) >= 0 floor(x)= n
@andreasavraam68983 жыл бұрын
Actually it's not that we can say that,but we HAVE to say that,basically what he did is wrong if n isn't non-negative. For example if n=-2, then -2=n0=n+2,so it would have been better not to use n,but |n| instead since we have the inequality for both sqrt(n+2) and -sqrt(n+2), that would have lead to the same answers and actually be correct.
@77Chester773 жыл бұрын
A quadratic equation with three solutions, nice :-)
@antoniopedrofalcaolopesmor60953 жыл бұрын
For x integer, [x]=x, so the roots of x^2-x-2 are also solutions for the given floor value equation. So we already have solutions x=2 and x=-1. Note that x^2-[x]-2 >= x^2-x-2. Since for x 2 we have that x^2-x-2 > 0, so x^2-[x]-2>0 and there are no solutions less than -1 or greater than 2. We just have to still look for solutions in the intervals (-1,0) , [0,1) , [1,2) and we're done.
@alexminsky13 жыл бұрын
A more straightforward method is to plot x^2 and [x]+2 and see the three solutions.
@aahaanchawla53933 жыл бұрын
Or plot y = x² - floor(x) - 2
@alexminsky13 жыл бұрын
@@aahaanchawla5393 Yep, that definitely works, but I guess for most folks, it’d be much easier to plot x^2 and [x]+2 separately and looking for the intersections there.
@aayushshende19433 жыл бұрын
X lies in [-1 , 0] to [1,2] . I solved it as a regular quad eqn and then found it intervals by using how the floor func works.
@davidseed29393 жыл бұрын
here’s my way. [_x_] is an integer, so is 2 , so x^2 must be an integer, also x^2 non-negative. So, we can just go through all the values of x^2 and see whether [_x_] and x^2 are compatible. x^2 …..:……… 0 , 1 , 2 , 3 , 4 , 5 x^2-2=[_x_] -2 , -1 , 0 , 1 , 2 , 3 x"…………………* , -1 , * , 1.73, 2 , *(sqrt(5)=2.23) * indicates that there is no value x^2 such that +-sqrt(x^2) = x^2-2. since x^2 -2 rises faster than x once we have x^2-2>[_x_] then there will be no further solutions. So x={ -1, sqrt(3),2}
@242math3 жыл бұрын
you handled this floor equation very well. great job bro
@SyberMath3 жыл бұрын
I appreciate it, man! 🤗
@markobavdek94503 жыл бұрын
Floor equations are like falling down the stairs 😆
@mrhatman6753 жыл бұрын
Hahahahahahahahaha quite literally
@mathsandsciencechannel3 жыл бұрын
Great video sir. Love that ♥️♥️♥️♥️
@aashsyed12773 жыл бұрын
heelo
@nicogehren65663 жыл бұрын
nice question sir thanks
@SyberMath3 жыл бұрын
You're welcome!
@gmutubeacct3 жыл бұрын
Thanks for posting this. Why did you not work on the OR part of the 2 inequalities you defined at 3:46? It turns out that it would not give you any additional solutions. But, don't you have to work on that for thoroughness? Thanks
@elgalvin Жыл бұрын
Where from did you get -1
@comingshoon27173 жыл бұрын
hermosa solución
@luiscrispinvargas30614 ай бұрын
Creo que hay un pequeño error en la resolución, las respuestas sí están bien pero la parte donde resuelves n≤√n+2, estás elevando al cuadrado suponiendo que n sea positivo, lo cuál no lo tenemos la certeza, por lo que no podrías elevar al cuadro, ahí comienza lo que estaría mal la resolución. Espero haber ayudado, saludos desde Perú.
@3r3nite983 жыл бұрын
We are currently in the 1st Floor rn. Also I bet this will be a good video.
@pardeepgarg26403 жыл бұрын
In search of Floor we lost our Ceiling 🤦🤦🤦
@SyberMath3 жыл бұрын
😁😂
@aashsyed12773 жыл бұрын
lmao
@supramitra3 жыл бұрын
Sorry,I couldn't join the premiere yesterday.But,I am watching now lol
@aashsyed12773 жыл бұрын
Hello
@manojsurya10053 жыл бұрын
Great problem, quadratic and floor are a good combo 😃
@SyberMath3 жыл бұрын
I agree!
@jimschneider7993 жыл бұрын
@9:05 - since: x^2 - floor(x) - 2 >= x^2 - x - 2 and x^2 - x - 2 is greater than zero for all x < -1 or x > 2, the solutions to x^2 - x - 2 = 0 bound the interval in which solutions to the original equation may be found. In fact, for any positive integer k, if x^2 - floor(x) - k = 0 has any solutions, they will be in the closed interval bounded by the roots of x^2 - x - k = 0. This does raise the question: does x^2 - floor(x) - k = 0 have any roots when k is a positive integer such that the roots of x^2 - x - k = 0 are not integers? I'll reply to this if I find proof either way.
@jimschneider7993 жыл бұрын
I found that x^2 - floor(x) - 1 = 0 has the solution x = sqrt(2), so the answer to the question I raised is "yes". Perhaps a more interesting question: does x^2 - floor(x) - k = 0 have any integer roots that are not also roots of x^2 - x - k = 0? Due to the fact that x^2 - floor(x) - k has a jump discontinuity at every integer value of x, I suspect the answer to that question is "no".
@jimschneider7993 жыл бұрын
A moment's reflection gave me an even easier proof; assume that x^2 - floor(x) - k = 0 has an integer root, x=n, such that n is not also a root of x^2 - x - k = 0. Since n is an integer, then n = floor(n), so that n^2 - n - k = 0. But that means that n is a root of x^2 - x - k = 0, a contradiction. Therefore, any roots of x^2 - floor(x) - k = 0 that are not also roots of x^2 - x - k = 0 cannot be integers.
@vameza13 жыл бұрын
Nice!!!
@SyberMath3 жыл бұрын
Thanks!
@mathevengers11313 жыл бұрын
I also made a floor video today. A coincidence.
@mathunt11303 жыл бұрын
One of the first things you can see is that x=2 is an is a solution...
@crykoh40823 жыл бұрын
Nice
@SyberMath3 жыл бұрын
Thanks
@aishbgm57433 жыл бұрын
once explain factorial in floor like [x/2!]
@leecherlarry3 жыл бұрын
compi finds three real solutions heh: *Solve[x^2 - Floor[x] - 2 == 0, x, Reals]*
@ςγτε3 жыл бұрын
what is compi?
@leecherlarry3 жыл бұрын
@@ςγτε computer (software)
@ςγτε3 жыл бұрын
@@leecherlarry so you are using Wolfram language (☉。☉)!
@leecherlarry3 жыл бұрын
@@ςγτε yeah me just beginner level. it's a beautiful language though 🙋
@rssl55003 жыл бұрын
Interesting ..
@SyberMath3 жыл бұрын
Glad you think so!
@illuminati56763 жыл бұрын
Hey,SyberMath can we solve this in this way 31¹
@antoine55713 жыл бұрын
Now I know how to kill those equations thanks
@aashsyed12773 жыл бұрын
How can you write syber's emoji?
@antoine55713 жыл бұрын
@@aashsyed1277 maybe because I'm member
@SyberMath3 жыл бұрын
Because he is a member 😉
@aashsyed12773 жыл бұрын
@@SyberMath can you write it? if you can then how? if you are not a member of yourself!
@ivansakovich76533 жыл бұрын
Почему не решили два двойных неравенства?
@TheodoreLong19953 жыл бұрын
Can you calculate x^i=?
@ganda3454 Жыл бұрын
(x-2)(x+1)
@Germankacyhay3 жыл бұрын
👍
@threstytorres43063 жыл бұрын
Let X is a Non-Decimal Number X^2 - X - 2 = 0 Using the Quadratic Formula We have X is equal to: 2 and -1
@SyberMath3 жыл бұрын
What about non-integers?
@montynorth30093 жыл бұрын
I get the solution of x being equal to 2 or -1 which I calculated using the formula for solving quadratic equations. I don't know about the square root of 3 and also not being an integer.
@mustafizrahman28223 жыл бұрын
x=plus minus 2
@hongkongsmartboy3 жыл бұрын
Divided into 2 cases: 1. x >=0, |x| = x 2. x
@rafiihsanalfathin94793 жыл бұрын
Floor and absolute value is not the same thing
@aashsyed12773 жыл бұрын
@@rafiihsanalfathin9479 he/she thought that by "floor" the absolutele value |