The Map of Topological Quantum Computing - a NEW Kind of Quantum Computer

  Рет қаралды 58,554

Domain of Science

Domain of Science

Күн бұрын

Visit Microsoft Azure Quantum here to learn about quantum computing for free quantum.microsoft.com/?ocid=2... quantum.microsoft.com/en-us/e... Topological quantum computing is a brand new form of quantum computing being developed by Microsoft as they enter the race to build the world's first useful quantum computer. In this video I visited Microsoft’s quantum labs to see how they are making their topological quantum computers and learn how topology helps their quantum devices avoid noise by harnessing the power of Majorana quasiparticles which are made from an exotic form of superconductivity where the electrons behave like there is a Majorana particle there which has the special properties of topology.
Get My Posters Here
For North America visit my DFTBA Store: store.dftba.com/collections/d...
For the rest of the world go to my RedBubble Store: www.redbubble.com/people/Domi...
I have also made posters available for personal or educational use which you can find here: www.flickr.com/photos/9586967...
Some Awesome People
And many thanks to my $10 supporters and above on Patreon, you are awesome!
Join the gang and help support me produce free and high quality science content:
/ domainofscience
Tut Arom
Anja
Jason Evans
machinator rimor
Mirik Gogri
Eric Epstein
Sebastian
Theodore Chu
My Science Books
I also write science books for kids called Professor Astro Cat. You can see them all here:
flyingeyebooks.com/book/profe...
profastrocat.com
Follow me around the internet
dominicwalliman.com
/ dominicwalliman
/ dominicwalliman
Credits
Writer, art, animation and edited by Dominic Walliman
I use Adobe Illustrator and After Effects for the graphics (for the many people who ask :)
References
“InAs-Al hybrid devices passing the topological gap protocol” journals.aps.org/prb/abstract...
“A cryogenic CMOS chip for generating control signals for multiple qubits” www.nature.com/articles/s4192...
Topological qubit noise levels - “Assessing requirements to scale to practical quantum advantage” chrome-extension://efaidnbmnnnibpcajpcglclefindmkaj/arxiv.org/pdf/2211.07629
Chapters
00:00 Topological Quantum Computing
02:01 Topology Explained
04:47 Resilience to Noise
05:51 Anatomy of a Quantum Computer
07:05 Chip Fabrication and Lab Tour
09:41 How to Build a Quantum Computer
11:21 Topological Quantum Computing Lego Explainer
15:40 Microsoft’s Results
17:50 Majorana Particle Explained
21:31 Sponsor Message
23:03 Thanks Patrons!

Пікірлер: 170
@danielwoods7325
@danielwoods7325 14 күн бұрын
Really liked this video because you don't often get explanations of all the jargon from someone who literally researched this and understands all the nuance. Great video!
@kevinlittle4556
@kevinlittle4556 14 күн бұрын
The explanation of topological quantum computing was both informative and interesting. The use of Legos to illustrate its functioning was particularly enjoyable.
@Katzeblow
@Katzeblow 14 күн бұрын
And then there's me still struggling to with algebraic topology
@GabrieleMacchi
@GabrieleMacchi 14 күн бұрын
Agree!
@mightynxumalo7579
@mightynxumalo7579 14 күн бұрын
Can't wait to play the next souls game with it.
@monkaeyes3417
@monkaeyes3417 14 күн бұрын
Meme of $3000 pc playing bloons TD6 but its the future and ehhh idk where to go with this.
@CoffeeTroll
@CoffeeTroll 14 күн бұрын
Can’t even play pong with them yet
@markonfilms
@markonfilms 14 күн бұрын
But will it run Crysis? 😂 It's so old it's almost not funny anymore. I guess now you might would say "Can it render a full Pixar movie in near real-time" lol
@soyokou.2810
@soyokou.2810 12 күн бұрын
Majorana, the Quasi
@alexander8877
@alexander8877 8 сағат бұрын
It does not work for classical tasks
@HarisAzriel
@HarisAzriel 14 күн бұрын
Hi, thanks for the great video! I'm an undergraduate student in mathematics, and I aspire to one day become a quantum researchers. During the pandemic, I had been watching materials about quantum computing from Microsoft, and it had been one of my greatest source of inspiration to choose this field of study. I'm glad that despite the hype around AI these days, they still haven't give up on pursuing quantum. Sometimes I feel defeated because of how late I'm coming into this field, but this video has sparked back some of that lost motivation. I won't give up in my pursuit, and again, thank you for the awesome video!
@En1Gm4A
@En1Gm4A 14 күн бұрын
these maps are pure distilled understanding - thx a lot
@PatiparnPojanart
@PatiparnPojanart Күн бұрын
This video is incredible! I spent a lot of time researching Majorana particles and quasi-particles with topological properties, and you managed to explain it all in less than half an hour. You're amazing! Now I can easily explain this topic to anyone. It's also exciting to see how Microsoft is turning physicists' decades-long dream of fabricating these islands into a reality!
@Rockyzach88
@Rockyzach88 14 күн бұрын
Describing an electron hole as a quasi-particle (collective behavior) is so intuitive. It makes me wonder why I never heard any of my teachers/professors explain it like that when that's quite literally what it is. Otherwise it just sounds like some wand waving explanation.
@MultiRRR123
@MultiRRR123 14 күн бұрын
Lots of things can be quasiparticles and high school/uni teachers never mention them! Magnons, and phonons are two other examples. There, the specific patterns of movement in an atomic lattice creates waves that can be characterized as particles with specific properties (spin, momentum, etc.) and they can even interact with real particles.
@pinhengchen
@pinhengchen 10 күн бұрын
The best introduction on topological quantum computing I have ever watched so far. Excellent job!!
@michaeltheisen
@michaeltheisen 10 күн бұрын
Another QC map! I love these because they help me visualize my favorite aspects of the field into a nice map! Its so clean and intuitive and really helps me organize my thoughts like one of those inspiration boards. Never stop making these maps! This is some of my favorite content on youtube!
@shafiandpritha7701
@shafiandpritha7701 14 күн бұрын
You have a great way of breaking down complex physics concepts 😊
@gustavmartin2
@gustavmartin2 14 күн бұрын
Great video! I finally have an idea of what topological qubits and Majorana particles are. Very well explained, I liked a lot the Lego analogy. Now I have a better understanding of the work my son is doing at Microsoft Lab. Thanks!
@dhruvbhardwaj-bk5cr
@dhruvbhardwaj-bk5cr 14 күн бұрын
Just freaking love this channel
@bobovv6060
@bobovv6060 13 күн бұрын
That was brilliantly explained !! Such difficult , esoteric concepts to convey and put together but you did it really well. Thank you. Really excited now to follow how this develops
@seminaia2009
@seminaia2009 12 күн бұрын
This is amazing I am actually doing a PhD and my research involves topological superconductivity and modelling using DFT
@Jm4steam
@Jm4steam 14 күн бұрын
Good video. Very interesting how this technology is progressing.
@drewwilson8756
@drewwilson8756 14 күн бұрын
Legos! What a great bump to the intellect of people everywhere.
@KnowLimitLLC
@KnowLimitLLC 12 күн бұрын
Don't take this wrong, but all your videos, infographics, and other information has developed within me my first man-crush! Haha . I love how you chop up all the information into bite-sized chunks, how effectively you boil down the comprehensive study of physics, and how especially interesting you make the information. ❤
@VMac-eg7fb
@VMac-eg7fb 13 күн бұрын
EXCELLENT RENDITION, GREAT CONCEPTS!
@javiercorrea9802
@javiercorrea9802 14 күн бұрын
Amazing video, thank you for making such a complex (but exciting!) topic so understandable. A treasure! Keep up the great work!!
@doctor6932
@doctor6932 11 күн бұрын
Thank you. I sincerely appreciate the time you spent to make this enlightening video.
@KelvinMeeks
@KelvinMeeks 14 күн бұрын
Really enjoyed this video. Very informative.
@zain_x_alpha
@zain_x_alpha 14 күн бұрын
thanks for video on quantum computing after 2 years✨
@giovannironchi5332
@giovannironchi5332 11 күн бұрын
I studied topology and homotopy theory and I am fascinated by technology. Thanks for this video!
@gianlucapetrignani7239
@gianlucapetrignani7239 12 күн бұрын
super cool videos! I love it! keep going man
@MikeBroadfoot
@MikeBroadfoot 11 күн бұрын
You really are a super quantum science explainer! Thanks!
@AGI-Bingo
@AGI-Bingo 2 күн бұрын
You need to include Thermodynamic Computing Now haha. Love your channel ❤
@user-jj7pt4mg8d
@user-jj7pt4mg8d 9 күн бұрын
So exciting to see the new development about QC. I have learned the MITXpro course named "Intro to Quantum Computing" last winter vacation and I am really passionate and confident about its future.
@tinobah6049
@tinobah6049 12 күн бұрын
Wow, this was so interesting. Thanks!
@tomsawyer283
@tomsawyer283 14 күн бұрын
Great work!
@varunahlawat9013
@varunahlawat9013 6 күн бұрын
thanks for this video!!
@nigh7swimming
@nigh7swimming 8 күн бұрын
Brilliant explanation!
@JamieBettison
@JamieBettison 14 күн бұрын
every time you say 'jiggling it' ..... phwoar x
@KStarGamer_
@KStarGamer_ Күн бұрын
I feel like there are two big things here that seem a bit unexplained: 1) So the state appears to be encoded by the parity of the number of electrons between the quantum dots, but this seems very binary (either 0 for even, 1 for odd)… how do you get the intermediate states necessary to be a qubit? My guess is that there is some non-zero probability the electrons are somewhat outside of the quantum dots a la quantum tunnelling. 2) What specific topological properties do Majorana particles specifically satisfy?
@magnusroos7493
@magnusroos7493 8 күн бұрын
I really love this series. When will we have the map of psychology?
@Juan-cl7un
@Juan-cl7un 12 күн бұрын
The problems that can be solved on quantum computers can also be solved on classical computers; any computable problem is computable regardless of the computational method used to compute it. What essentialy changes is the algorithmic complexity of the computational method being used.
@bullpup1337
@bullpup1337 8 күн бұрын
thats still being debated
@OneLazyRacoon
@OneLazyRacoon 14 күн бұрын
absolutelynflunked my maths exam today but a day when DOS posts is a good day so ir kind of equals out:))
@_TravelWithLove
@_TravelWithLove 5 күн бұрын
Thank you very much for sharing your insights and knowledge filled videos !! Intelligent and professional !! Outstanding !! Greetings from California … I wish you and folks good health , success and happiness !! Much Love ✌️😎💕
@anywallsocket
@anywallsocket 14 күн бұрын
There’s a fascinating overlap between this idea and thermodynamic computing: in both cases your ‘bits’ are emergent or supervene on collective behavior of more fundamental parts. And in both situations this insures a certain stability or robustness, because, by design, the system ‘wants’ to maintain these collective states. In a sense, it seems likely that we will figure out how to overcome noise and build error-correcting quantum bits by building them ‘from’ the noise itself.
@KevinRiggle
@KevinRiggle 13 күн бұрын
20:42 When you say that the Majorana particles exhibit topological properties, what does that... mean? The Majorana particle pairs are in some mathematical sense shaped differently depending on whether there are an even or odd number of electrons in them? Coming from complex systems theory, we often think of physics and atomic physics in particular as being the domain of both simple complexity, where analytic reduction works well, as well as the domain of disordered complexity, where predicting the motion of a small number of particles is difficult (the classic three body problem), but statistical aggregates generally work to derive the collective behavior of a system from the behavior of individual particles e.g. pressure in gasses or temperature in solids. Whereas it's higher scales where we tend to see ordered complexity where emergent behaviors, well, emerge. It's very interesting to me that at the subatomic level we're back to seeing emergent behavior like these Majorana quasi-particles.
@Ramkumar-uj9fo
@Ramkumar-uj9fo 14 күн бұрын
As an aside: While both involve surface-level operations, RPA automates tasks while topological quantum computing utilizes surface electrons for quantum computation.
@jefflastofka9289
@jefflastofka9289 14 күн бұрын
Great presentation - thanks! I'm wondering at about 13:00 what happened to the third "state" of the quantum device. I only see two states, so we're back to a binary computer it seems. I just discovered you through your math poster I saw at my local community college near San Diego, California. I'm going through your channel and site now. Thanks again.
@bensimonjoules4402
@bensimonjoules4402 14 күн бұрын
The "third" state, or the difference, would be the superposition of having an even or odd number of electrons, I think.
@mduckernz
@mduckernz 9 күн бұрын
The superposition of states is only useful when it’s combined with other qubits, arranged as quantum logic gates. Then the output is the finished product.
@NHCH
@NHCH 2 күн бұрын
This resembles a lot the development of the blue led. Obviously much more professional
@schunka1051
@schunka1051 11 күн бұрын
super cool I'll try to do my PhD there
@fire17102
@fire17102 11 күн бұрын
Have you seen Extropic's Thermodynamic Computer? Love your channel ❤
@user-pd8oo2rs6j
@user-pd8oo2rs6j 12 күн бұрын
Hello sir since there are a lot of people from different countries around the world that follow you and want to learn English I hope that you make a vedio about the map of English language.
@justincloudy
@justincloudy 13 күн бұрын
So, electrons odd or even for 2 of the possible states of a qubit, and the 'read-out' doesn't destroy the quantum information? Or it's necessary that the quant info is sent to both ends of the nanowire to not de cohere that info, or is it only to protect against noise? So, they will have another topology for the other states a qubit can be in, and then the combination of the two will work together?
@Kaybarax
@Kaybarax 13 күн бұрын
The fact that I understood everything, yet I have no diploma in physics. I'm just a physics enthusiast who has personally been studying 100s of hours beyond the last mini-physics class I had to do in uni, in my CS undergraduate study!
@Rockyzach88
@Rockyzach88 14 күн бұрын
Legos are a gift for science and engineering lol. I had to make a presentation about chemical inhibitors for the company I worked for at the time and I used legos to describe the process. It worked great.
@chrisaassd
@chrisaassd 14 күн бұрын
Very nice
@user-xq2we4ke5t
@user-xq2we4ke5t 10 күн бұрын
I highly encourage you to read 'majorana returns' from Frank Wilczek, it is very readible and enlightening
@senvo28
@senvo28 3 күн бұрын
Amazing 😍
@mattewlefty991
@mattewlefty991 11 күн бұрын
Every video I watched about quantum computing explains how such computers encode the quantum bits into physical media (and you did it well) but never explains how they do computation (and imo that's the most interesting part). Are you working also on that? Thanks
@MichaelClarke1646
@MichaelClarke1646 11 күн бұрын
Check back later for the next map. I'm sure it will be a doozy.
@rcbturbine9
@rcbturbine9 13 күн бұрын
Mind-blowing
@Miguel_Noether
@Miguel_Noether 14 күн бұрын
As good as it gets, 👌
@carlosjosericorodriguez6240
@carlosjosericorodriguez6240 4 күн бұрын
Do a map of *LAW* for lawyers
@vinniepeterss
@vinniepeterss 5 күн бұрын
top notch!
@LucasOe
@LucasOe 14 күн бұрын
17:46 Why is Atom Computing listed two times?
@JuliusUnique
@JuliusUnique 14 күн бұрын
9:09 yeah, it is common for atoms to have dislocations, in which an entire row of atoms shifts, which is normal when many tiny balls are next to each other, in this case those tiny balls are atoms
@garretthiggins2152
@garretthiggins2152 6 күн бұрын
So the superposition we are taking advantage of is the number of electrons in the wire?
@hekewa
@hekewa 9 күн бұрын
Nice!
@md.adnannabib2066
@md.adnannabib2066 14 күн бұрын
So if i am correct quasi particle are analogous to molecule.
@vinniepeterss
@vinniepeterss 5 күн бұрын
love it
@MrBleachFix
@MrBleachFix 13 күн бұрын
Great explanation. Why are we still only interested in 0 and 1 though? I thought quantum computers used 4 states per qubit. I haven’t caught up on this stuff for a few years.
@VR_Wizard
@VR_Wizard 14 күн бұрын
So the information of all 3 or 4 q bits is combined in a new form of Information that is spread over a distance into 2 seperat regions that I think i understood. These 2 regions are independent from one another and therefore rubust to noise, i also understand. But if I measure one of the two regions or in other words dissrupt one of the two regions I would know the state of the q-bits because I measured them. I thought that is the problem with q-bits. Noise in my understanding is like measurement and they can only compute when they are not measured. I though they colapse into a state of 1 or 0 when they are measured. In the time they are undisturbed they can be in every possible state and do all the calculations. Or is measuring one of the two regions not telling me anything about the q-bit because it is the combined signal of all the q-bits and therefore doesn't count as measuring them? But if mesuring is not a problem what do we mean by disrupting one of the two regions?
@vmiguel1988
@vmiguel1988 10 күн бұрын
This video was too short, I have so many questions!
@nunya___
@nunya___ 11 күн бұрын
7:45 Atom Computing is listed twice.
@cem_kaya
@cem_kaya 14 күн бұрын
Can this be extended to qutrits ?
@gurkdoinwork
@gurkdoinwork 14 күн бұрын
Killer video. Obviously you don't want to step on MS toes, as they both hosted and sponsored this video. So there is something I'm wondering still about this topic: your personal opinion. Do you think this tech will make them the quantum computing leaders?
@framegrace1
@framegrace1 14 күн бұрын
Was about to comment, I think I know what they were smokeing when naming "Majorana" a "quasi particle" (nod,nod,wink, wink).... And turns out is the name of the guy who found them
@Juxtaposed1Nmotion
@Juxtaposed1Nmotion 14 күн бұрын
How do they keep vaccumm fluctuations from disturbing the chip?
@elijahcherweznik3505
@elijahcherweznik3505 21 сағат бұрын
I'm a bit confused how having a wire with some number of electrons on it can work as a cubit, how is that different that having a chain of tiny gates in a traditional computer?
@35saipur
@35saipur 10 күн бұрын
Y el mapa de la inteligencia artificial?
@nandishajani
@nandishajani 11 күн бұрын
I have one question. Why we have Majorana particles in the pairs of 2. Why can't we have them as a collection of lets say 20 50 or 100 ?
@HugeRademaker
@HugeRademaker 14 күн бұрын
Surely there will be a Start-button.
@Ctrl_Alt_Sup
@Ctrl_Alt_Sup 14 күн бұрын
Is it possible to use AI to optimize the structure of a Majorana particle?
@mark0032
@mark0032 14 күн бұрын
"We might be able to do it if we use a majorana particle" "Can't theyre theoretical" "Oh ya, what if......" And the guy is a genius.
@shpalman7
@shpalman7 14 күн бұрын
the community is still far from convinced that majorana modes have been demonstrated here and the peer review of the cited Phys Rev B was somewhat controversial
@repsn_sets1749
@repsn_sets1749 13 күн бұрын
In ONE video release we really went from "the map of plants" to "the map of topological quantum computing".....
@josh10665
@josh10665 13 күн бұрын
Are majorana particles non-abelian anyons?
@LieuweStraatman
@LieuweStraatman 8 күн бұрын
Why? Why is it that matter at the edges of the universe appears to move faster then it should (according to modern theory). The simple solution is that there is non visible matter present holding the universe closer together then previously thought. This dark matter would act as a solidifier tying the ends to the middle making it having to keep up even though it has to travel longer distances to do so, simmilar to those death machines in playgrounds where you can go to the middle turntable and then proceed to step to the outer edge to enhance the risk of early neck trauma. Let's try and find some other ways into this phenomenon. The first argument I'll be presenting is a relativistic one. We know there are two ways to slow down time, one is to have a lot of mass, the other is to go really fast. If we want the entire universe to have undergone the same amount of entropy we need some way to compensate for the lack of mass. In order to stay within the same timeframe (implicit positive correlation between entropy and time) the matter at the edges of galaxies has to be moving faster. The second argument I'll be making has to do with the difference between rationality and irrationality. If we want to condense matters doing this rationally is probably your best bet, pretty much the reason why your mom is better at packing than you are. This translates to the positive correlation between matter density and rationality. In other words, matter at the edges of galaxies tends more towards irrationality. For a quick sidenote: the symmetry breaking (irrational) weak force doesn't act on light (strictly), this might clarify why this irrational matter is mostly invisible. Rationality is indifferent to direction, it doesn't really matter how you lay a football for a free kick. This is unless you believe in hitting the ball at the valve for that infamous knuckle effect, which is exactly keeping the irrationality behind the primary interaction surface, letting it act indifferent. But this is all a little to deep, so let's resurface. In principle an irrational object is a lot more unidirectional. Throwing an American football, orientation matters. The irrational shape of the American football allows it to cut the air better, allowing for greater throwing distances. Irrationality allowing for advantages doesn't break the principle of entropy, since any small advantage you gain in one orientation greatly increases the disadvantage of any other orientation. In short: reality is slowed down in two ways, mass and speed. The more rational condensed centers of galaxies are on the side of using mass while the irrational edges are more on the side of using speed. In this way there is at least an inclination towards less entropy.
@jonaspiva41
@jonaspiva41 12 күн бұрын
is it not massively similar to annealing machines? majorana particles sound like they would be more susceptible to noise vs "atomic" or holy grail qubits, like if D-wave isn't good enough...
@JuliusUnique
@JuliusUnique 14 күн бұрын
but if they only measure if there are odd or even electrons, where is the inbetween?
@user-qq3xs9hb5w
@user-qq3xs9hb5w 9 күн бұрын
Can you make a video about evolution of human and animals ❤❤❤❤
@emuschemre
@emuschemre 11 күн бұрын
Could you make a map of human Knowledge. Or knowledge in general
@stefanbergung5514
@stefanbergung5514 14 күн бұрын
Since quantum physics is based in Stochastics, can you make a map of the branch of math with it and game theory? I finished a collage course in it and know feel Less knowledgeable. And it's apparently normal.
@gordonshumway6265
@gordonshumway6265 13 күн бұрын
Quantum physics is not necessarily based on stochastics. That's just the Kopenhagen interpretation. The wave-like behaviour of matter on small scales is far more defining. Mathematically, I would say quantum physics is more like linear algebra ..
@stefanbergung5514
@stefanbergung5514 13 күн бұрын
@@gordonshumway6265 When a large electron cloud collapses opon being measured, it Behaves like a probably distribution. It doesn't matter, if it actually is one. Like gravity and centrifugal might not be primary forces (they are inertia resulting in acceleration in another reference frame), but they Behave exactly like forces and therefore Are Real forces.
@JuliusUnique
@JuliusUnique Күн бұрын
I still dont get how they can have values between 1 and 0 if it only measures odd or even which are 2 states, if anyone can explain it to me I'd appreciate it a lot
@HugeRademaker
@HugeRademaker 14 күн бұрын
Electrons all have the same electrical charge, so how will they stay happily close together while being trapped?
@MostlyIC
@MostlyIC 11 күн бұрын
close but no cigar, in the introduction it was explained that a quantum bit can be more than just 0 or 1, it can be anything in between, and that's what makes it different from a classical bit which can only be 0 or 1 and nothing in between, but then you go on to describe an example of a topological qubit where there is either an even or odd number of electrons in it, well that's either even or odd but nothing in between, so you've lost out on quantum-ness. I think you went too far in dumbing this one down for the audience ?
@mememealsome
@mememealsome 10 сағат бұрын
Typically with qbits the physical system can only be in two states. The low temperature and insulation from the outside world allows the circuit to exist in a superposition of 1 and 0, meaning they’re (sort of) both with some probability that they appear to be a 1 or 0 when measured. To do a quantum calculation they run a set of operation, measure the 1s and 0s, repeat, measure, repeat… eventually they have enough measurements to calculate the probability of the superposition before it collapsed and that’s the actual value of the qbit.
@MostlyIC
@MostlyIC 9 сағат бұрын
@@mememealsome as near as I can tell you are agreeing with me, the video does not explain this subtlety of quantum computing, and actually very few explanations that I've come across do. I still find it mind boggling that people think quantum computing is efficient when you actually have to repeat the computation so many times before you get a statistically meaningful result.
@LukasSmith827
@LukasSmith827 14 күн бұрын
lesss go!
@DudeWhoSaysDeez
@DudeWhoSaysDeez 13 күн бұрын
What was your Ph.D in exactly?
@SwordQuake2
@SwordQuake2 14 күн бұрын
They're not "russian" (the real name of that country is moscovia). The nesting dolls are originally from Japan.
@obnoxious_efe420
@obnoxious_efe420 14 күн бұрын
This guy: makes a video Leaves for a long time Comes back Refuses to elaborate further
@Any-TNG
@Any-TNG 14 күн бұрын
Microsoft was high enough to make Marijuana Particles in Quantum Computers
@philippgallaschik3079
@philippgallaschik3079 14 күн бұрын
Pleaase do one for AI 🙏🙏
@nobbymorph
@nobbymorph 14 күн бұрын
Now I know why Office 365 costs so much!
@MultiRRR123
@MultiRRR123 14 күн бұрын
I've seen a lot of skeptical opinions about Microsoft's results, and it's hard to find where the truth lies with what they've actually achieved with these one sided videos. But I appreciate the video either way, it at least helps map out what they are claiming.
@chaeju106
@chaeju106 14 күн бұрын
BUT can it run DOOM tho?
@manteiga_de_pimenta
@manteiga_de_pimenta 14 күн бұрын
It can and cannot at the same time
@tbird81
@tbird81 13 күн бұрын
8:15 Does this guy just height mog everyone?
@itslogannye
@itslogannye 13 күн бұрын
…but can it run Roller Coaster Tycoon 2?
@youtubenutzer1321
@youtubenutzer1321 7 күн бұрын
Please upload the map of plants to redbubble
@youtubenutzer1321
@youtubenutzer1321 7 күн бұрын
I am from Germany and I like your content:)
@JolydeFer123
@JolydeFer123 13 күн бұрын
15hours ago? Ye the "NEW" is pretty accurate then
The Speed of Light is NOT Fundamental. But THIS is.
16:34
Domain of Science
Рет қаралды 438 М.
The Map of Quantum Computing - Quantum Computing Explained
33:28
Domain of Science
Рет қаралды 1,6 МЛН
ELE QUEBROU A TAÇA DE FUTEBOL
00:45
Matheus Kriwat
Рет қаралды 8 МЛН
О, сосисочки! (Или корейская уличная еда?)
00:32
Кушать Хочу
Рет қаралды 7 МЛН
Interstellar Expansion WITHOUT Faster Than Light Travel
21:14
PBS Space Time
Рет қаралды 636 М.
And this year's Turing Award goes to...
15:44
polylog
Рет қаралды 86 М.
Sodium-ion batteries in the USA. Beating China at their own game!
12:52
Just Have a Think
Рет қаралды 331 М.
Has Generative AI Already Peaked? - Computerphile
12:48
Computerphile
Рет қаралды 683 М.
Why China's Shenzhou is Better Than Russia's Soyuz
16:27
Scott Manley
Рет қаралды 325 М.
Light sucking flames look like magic
18:05
Steve Mould
Рет қаралды 333 М.
Quantum Computers - FULLY Explained!
12:28
ColdFusion
Рет қаралды 851 М.
The Map of Particle Physics | The Standard Model Explained
31:48
Domain of Science
Рет қаралды 1,4 МЛН
С Какой Высоты Разобьётся NOKIA3310 ?!😳
0:43
Apple. 10 Интересных Фактов
24:26
Dameoz
Рет қаралды 122 М.