A Very Nice Math Olympiad Problem | Solve for a, b and c | Algebra

  Рет қаралды 16,102

Spencer's Academy

Spencer's Academy

Күн бұрын

Пікірлер: 48
@kamalmakhtoomnejad
@kamalmakhtoomnejad Ай бұрын
To solve this equation, it is enough to move the number d148 from base 10 to base 2, which becomes (10010100). Now, if we write this number again in base 10, it becomes:(0×2^0+0×2^1+1×2^2 +0×2^3+1×2^4+0×2^5+0×2^6+1×2^7) by simplifying we have: (2^2+2^4+2^7 ) that the values ​​of a,b,c =(2,4,7) are easily obtained.
@dan-florinchereches4892
@dan-florinchereches4892 Ай бұрын
This will give all integer solutions. We have infinitely many real solutions and I am not sure if question requires them. Consider a simple case Z=2^x+2^y intersected with plane Z=k . The surface is increasing with both X and y and for k >0 there will be a continuous intersection curve hence infinitely many real solutions
@mchang7901
@mchang7901 Ай бұрын
This is nice, very clever
@SpencersAcademy
@SpencersAcademy Ай бұрын
Well explained 👏
@carlosjimenez2848
@carlosjimenez2848 28 күн бұрын
Obvio
@davidseed2939
@davidseed2939 27 күн бұрын
yes good reliable method. you can also take 148, then find the highest power of 2 that is smaller than the given number and subtract. ie 148-128=20 and repeat 20-16=4 so we have 148=128+16+4=2^7+2^4+2^2 so x,y,z= 7,4,2
@mrinaldas9614
@mrinaldas9614 Ай бұрын
I feel this type of sums could be done using careful observation. Basically we have to distribute 148 in 3 parts, each of which is a power of 2 (2,4,8,16,32 , 64,128 etc) , so that the sum would be 148. Simple iteration would giveth result: 128+16+4. (a,b c are interchangeable.)
@nabeelahmed6358
@nabeelahmed6358 Ай бұрын
its just binary
@simonlevett4776
@simonlevett4776 Ай бұрын
@@nabeelahmed6358 Is it ?
@markgideon3997
@markgideon3997 Ай бұрын
Let me show an easier guess-and-check solution. For starters, you need to realise that a, b or c cannot physically be more than 7. If you got 2^8, it’s already 256. So let’s assume a is equal to 7. Then 2^b + 2^c = 148-128=20. Now what is the maximum b or c? It is 4 because 2^5 is already 32. Let’s try b=4. Then 2^c = 20-2^4 = 4. If 2^c = 4, then c=2. So we got the following numbers: 2,4,7. I confess, it’s not really a mathematical “elegant” solution, but it still works
@NishantChaudhury
@NishantChaudhury Ай бұрын
Elegant You care about eelegant This method is amazing someone average like me Thank you
@davidseed2939
@davidseed2939 27 күн бұрын
it is elegant and reliable. And if you know your powers of 2, it’s the quickest because subtraction is the only process.
@marekzalinski390
@marekzalinski390 Ай бұрын
No need to do any trick. The binary representation of 148 is 10010100. There are three 1 in the number, at positions 2^7, 2^4 and 2^2, so the only combination is 7, 4, 2 in any order. If the problem contained more than three powers of 2, more solutions would be possible. E.g. with 2^d added, the solutions will be 6,6,4,2; 7,3,3,2; and 7,4,1,1. As can be seen, the solutions are based on splitting one of the powers of two into two smaller powers of two. That 12 minutes could be directed to explaining binary numbers - a very useful knowledge in this days - and the last 30 seconds, to solving that trivial question.
@Dr_piFrog
@Dr_piFrog Ай бұрын
(7,4,2) 2^7 = 128 2^4 = 16 2^2 = 4 sum = 148
@starthakog
@starthakog Ай бұрын
Exactly. No need to fully solve like needs.
@andryvokubadra2644
@andryvokubadra2644 Ай бұрын
2^a + 2^b + 2^c = 148 2^a + 2^b + 2^c = 2²(37) 2^a + 2^b + 2^c = 2²(36 + 1) 2^a + 2^b + 2^c = 2²(32 + 4 + 1) 2^a + 2^b + 2^c = 2²(2^5 + 2² + 2^0) 2^a + 2^b + 2^c = 2^7 + 2⁴ + 2² a = 2,4,7 b = 2,4,7 c = 2,4,7 {a,b,c} = 3*2*1 = 6 combinations of 2,4,7 😊😊😊
@SpencersAcademy
@SpencersAcademy Ай бұрын
Excellent delivery! 👏
@andryvokubadra2644
@andryvokubadra2644 Ай бұрын
@@SpencersAcademy a,b,c = 2,4,7 a,b,c = 2,7,4 a,b,c = 4,2,7 a,b,c = 4,7,2 a,b,c = 7,2,4 a,b,c = 7,4,2 {a,b,c} = 6 combinations 😊😊😊
@boguslawszostak1784
@boguslawszostak1784 Ай бұрын
assuming a
@SpencersAcademy
@SpencersAcademy Ай бұрын
Excellent! 👍
@MARTINWERDER
@MARTINWERDER Ай бұрын
6 solutions: (a, b, c) = (7, 4, 2), (7, 2, 4), (4, 2, 7), (4, 7, 2), (2, 7, 4), (2 , 4, 7)
@xvoidx_yt1723
@xvoidx_yt1723 Ай бұрын
Yes
@9허공
@9허공 Ай бұрын
WLOG, we assume a ≥ b ≥ c => 2^a + 2^b + 2^c = 2^c * ( 2^(a-c) + 2^(b-c) + 1 ) = 2^2*37 => c = 2 => 2^(a-2) + 2^(b-2) + 1 = 37 => 2^(b-2)*( 2^(a-b) + 1 ) = 2^2*9 => b-2=2 => b = 4 => 2^(a-4) + 1 = 9 => 2^(a-4) = 2^3 => a-4 = 3 => a = 3 Answer set (a,b,c) = permutations of (2,4,7) = { (2,4,7),(2,7,4),(4,2,7),(4,7,2),(7,2,4),(7,4,2) }
@SpencersAcademy
@SpencersAcademy Ай бұрын
Amazing 👏
@nabeelahmed6358
@nabeelahmed6358 Ай бұрын
you know, my first thought was to see how to write the number in binary, because the representation is in powers of 2
@SpencersAcademy
@SpencersAcademy Ай бұрын
Well said 👏
@simonlevett4776
@simonlevett4776 Ай бұрын
So if the powers were all 4, you would use base 4 to find the answer ?
@nabeelahmed6358
@nabeelahmed6358 Ай бұрын
​@@simonlevett4776 yeah ig
@ilafya
@ilafya Ай бұрын
Il suffit écrire le nombr148 en base 2 Ie en somme se puissance de 2 ou148=10010100
@davidbrisbane7206
@davidbrisbane7206 Ай бұрын
What are the positive integer values of a, b and c such that 333 = 3^a + 3^b + 3^c? Notice 333 (base 10) = 110100 (base 3) So a = 5, b = 4, c = 2 (corrected) and all combinations of these values.
@SpencersAcademy
@SpencersAcademy Ай бұрын
You did a great job. Could you please check your result?
@davidbrisbane7206
@davidbrisbane7206 Ай бұрын
@@SpencersAcademy Thanks. c = 2
@RealQinnMalloryu4
@RealQinnMalloryu4 Ай бұрын
{74+74+74}=222 1^1^2 1^2 (abc ➖ 2abc+1).
@xvoidx_yt1723
@xvoidx_yt1723 Ай бұрын
Why did we raise it to 2^a. Can you please explain?
@pascallemesle
@pascallemesle Ай бұрын
there are 6 solutions (2,4,7), (2,7,4), (4,2,7), (4,7,2), (7,2,4) and (7,4,2)
@SpencersAcademy
@SpencersAcademy Ай бұрын
Excellent! 👍
@simonlevett4776
@simonlevett4776 Ай бұрын
I thought there was only one solution.
@AlphaAnirban
@AlphaAnirban Ай бұрын
​@@simonlevett4776 Technically there is only one solution to this. But you dont know the value of a,b,c individually. You just know that ANY ONE of them has to be 2, while the other two have to be 4 and 7. But we dont know WHICH of the three will have these values. For all we know, anyone could have the value of 2 or 4 or 7. So we list down all possibilities rather than just giving a single answer.
@kavitapatidar2811
@kavitapatidar2811 Ай бұрын
How do you say that the even and odd numbers are same in both sides
@kavitapatidar2811
@kavitapatidar2811 Ай бұрын
Right question
@key_board_x
@key_board_x Ай бұрын
2^(a) + 2^(b) + 2^(c) = 148 2^(a + c - c) + 2^(b + c - c) + 2^(c) = 148 2^(c + a - c) + 2^(c + b - c) + 2^(c) = 148 [2^(c) * 2^(a - c)] + [2^(c) * 2^(b - c)] + 2^(c) = 148 2^(c) * [2^(a - c) + 2^(b - c) + 1] = 148 ← there is an odd number in the second bracket 2^(c) * [2^(a - c) + 2^(b - c) + 1] = 4 * 37 2^(c) * [2^(a - c) + 2^(b - c) + 1] = 2^(2) * 37 → you can deduce that: 2^(c) = 2^(2) → c = 2 [2^(a - c) + 2^(b - c) + 1] = 37 2^(a - c) + 2^(b - c) = 36 [2^(a) * 2^(- c)] + [2^(b) * 2^(- c)] = 36 [2^(a) * 1/2^(c)] + [2^(b) * 1/2^(c)] = 36 → recall: c = 2 [2^(a) * 1/4] + [2^(b) * 1/4] = 36 (1/4) * [2^(a) + 2^(b)] = 36 2^(a) + 2^(b) = 144 2^(a + b - b) + 2^(b) = 144 2^(b + a - b) + 2^(b) = 144 [2^(b) * 2^(a - b)] + 2^(b) = 144 2^(b) * [2^(a - b) + 1] = 144 ← there is an odd number in the second bracket 2^(b) * [2^(a - b) + 1] = 16 * 9 2^(b) * [2^(a - b) + 1] = 2^(4) * 9 → you can deduce that: 2^(b) = 2^(4) → b = 4 [2^(a - b) + 1] = 9 2^(a - b) = 8 2^(a - b) = 2^(3) a - b = 3 a = b + 3 → recall: b = 4 → a = 7
@SpencersAcademy
@SpencersAcademy Ай бұрын
Fantabulous! 👍
@riteshgulati7110
@riteshgulati7110 Ай бұрын
L am
@simonlevett4776
@simonlevett4776 Ай бұрын
How do you calculate these when the numbers are different, ie 2, 3 & 5 for example.
@andryvokubadra2644
@andryvokubadra2644 Ай бұрын
@@simonlevett4776 umumnya soal olimpiade terlihat rumit namun sebenarnya mudah, karena menggunakan trik. Ya jika soal olimpiade muncul seperti yang anda sebutkan, maka mau tak mau berjuanglah secara 'brute force' 😁😁😁
@omm-o6i
@omm-o6i Ай бұрын
2:37 Sir if in a case b=a (let say) then 2 ᷨ/2 ͣwill become 1 then (1+1+2 ͨ ̄ ͣ) will become even
@SpencersAcademy
@SpencersAcademy Ай бұрын
Yes, you're right. But in this case, a is not equal to b
A Very Nice Math Olympiad Problem | Solve for a and b | Algebra
10:03
Spencer's Academy
Рет қаралды 3,6 М.
A Very Nice Math Olympiad Problem | Solve for x | Algebra
28:12
Spencer's Academy
Рет қаралды 10 М.
Farmer narrowly escapes tiger attack
00:20
CTV News
Рет қаралды 6 МЛН
How to Fight a Gross Man 😡
00:19
Alan Chikin Chow
Рет қаралды 15 МЛН
What type of pedestrian are you?😄 #tiktok #elsarca
00:28
Elsa Arca
Рет қаралды 34 МЛН
Players push long pins through a cardboard box attempting to pop the balloon!
00:31
A Very Nice Math Olympiad Problem | Solve for x | Algebra
16:04
Spencer's Academy
Рет қаралды 15 М.
Math Olympiad | A Nice Exponential Problem | 90% Failed to solve
19:17
Germany l can you solve?? l Olympiad Math exponential problem
9:59
Math Master TV
Рет қаралды 154 М.
A math olympiad problem that looks complicated, but it's easy to solve
10:23
Higher Mathematics
Рет қаралды 266 М.
Harvard University Admission Interview Tricks
13:09
Super Academy
Рет қаралды 141 М.
A Very Nice Math Olympiad Problem | Solve for all values of x
31:56
Spencer's Academy
Рет қаралды 3,9 М.
A tricky problem from Harvard University Interview
18:11
Higher Mathematics
Рет қаралды 254 М.
Nice Olympiad Math | x^2-x^3=12  | Nice Math Olympiad Solution
15:05
OnlineMaths TV
Рет қаралды 1,4 МЛН
Nice Math Olympiad Algebra Equation | How to Solve?
10:40
Math Beast
Рет қаралды 136 М.
Math Olympiad| German| exponential math problem.
7:31
JJ ONLINE MATHS CLASS
Рет қаралды 51 М.
Farmer narrowly escapes tiger attack
00:20
CTV News
Рет қаралды 6 МЛН