i watch your video today andi got amazed by your skills how you explain simply thankA lot
@UnfoldDataScience2 жыл бұрын
Thanks Nitin for feedback
@nareshjadhav49623 жыл бұрын
Thanks Aman. Much cleared now😊
@UnfoldDataScience3 жыл бұрын
Welcome Naresh.
@souravbiswas68922 жыл бұрын
Awesome explanation, hence comes the concept of parsimonious model,- obtaining higher accuracy with fewer no of predictors..
@anuradhabalasubramanian98452 жыл бұрын
Awesome Explanation Aman ! Great job
@rajalakshmisathivasagam48395 ай бұрын
Nice explanation.
@rahultivarekar67682 жыл бұрын
NIce informative video. Thank you.
@lancelotdsouza47052 жыл бұрын
Thanks for the beautiful videos, love your explanations, so simple but yet profound. Can't thank you enough. Your videos are better than paid courses
@UnfoldDataScience2 жыл бұрын
Thanks for watching Lancelot. Your words mean a lot to me.
@sanketadamapure8023 жыл бұрын
Great Aman Sir ....!!!🙂
@UnfoldDataScience3 жыл бұрын
Thanks For watching Sanket.
@henrikherrmann5402 жыл бұрын
Great video
@upendram28203 жыл бұрын
Very good sir..
@UnfoldDataScience3 жыл бұрын
Thanks Upendra.
@sadhnarai87573 жыл бұрын
Very good Aman
@UnfoldDataScience3 жыл бұрын
Thank you.
@fahadnasir16052 жыл бұрын
Thank you for very detailed video, outstanding work Aman. One questions - When I create model in python with one independent variable, the output shows adjusted R square in it, how will we interpret adjusted R square for a model which has one independent variable?
@aravinthmegnath3569 Жыл бұрын
For a model with one independent variable, the adjusted R-squared will be the same as the regular R-squared value. The R-squared value ranges from 0 to 1, with 1 indicating that the model perfectly fits the data, and 0 indicating no fit at all. Therefore, if you have a model with only one independent variable, you can interpret the adjusted R-squared value as the proportion of the variation in the dependent variable that can be explained by that independent variable.
@viratmani70113 жыл бұрын
Based on Rsquared score are we selecting features? Is R squared is a feature selection technique for linear regression?
@UnfoldDataScience3 жыл бұрын
In one way we can say yes, if your adjusted R squared is dropping you may want to revisit the variable and it's contribution on model learning.
@omkarfadtare30542 жыл бұрын
Thanks you explain every concept in simple words which are so easy to understand..🙏👍 and Thanks to the recommendation engine as well which recommended me your channel 😄😄
@UnfoldDataScience2 жыл бұрын
It's my pleasure
@dilnawazahmed9492 жыл бұрын
Kya padhate h bhai aap Maza aa gya 👌👌
@UnfoldDataScience2 жыл бұрын
Pls share with friends as well. Thank you.
@dilnawazahmed9492 жыл бұрын
@@UnfoldDataScience Okay Sir 👍
@ankitachaudhari992 жыл бұрын
Good crisp explanation
@UnfoldDataScience2 жыл бұрын
Thanks Ankita. Please share with friends as well.
@ankitachaudhari992 жыл бұрын
@@UnfoldDataScience yes
@letslearnwithumesh43602 жыл бұрын
You explain very good
@UnfoldDataScience2 жыл бұрын
Thanks a lot
@bhavithakusam79623 жыл бұрын
What's the difference between adjusted-r square and feature importance? And when to use them
@UnfoldDataScience3 жыл бұрын
Feature importance is at feature level/Column level whereas adjusted R squared is at model level.
@SACHINKUMAR-px8kq2 жыл бұрын
Thanks sir
@rezazaman52782 жыл бұрын
Thanks for such excellent videos. Just to make my understanding correct about the formula: R2 = 1 - [(1-R2)*(n-1)/(n-k-1)] Questions : 1. Is Adj. R2 calculated based on train and test dataset independently or on entire dataset ? 2. model.score(X, y) : are X and y from entire dataset or from X_train,/y_train or from X_test/y_test separately ? n = is it the total observations in actual dataset or depends on the length of train and test dataset ? k = X.shape[-1] , X from actual dataset or from X_train/y_train? Thanks Aman.
@aravinthmegnath3569 Жыл бұрын
1.The adjusted R-squared is calculated based on the entire dataset used to build the model. It is a measure of how well the model fits the data overall and takes into account the number of independent variables in the model.
@subhajitdutta14432 жыл бұрын
Hello Aman, Can u please help me to know if we add some important feature then what will happen to adjusted R square? Is it going to increase or decrease?
@UnfoldDataScience2 жыл бұрын
if its important, it should increase
@subhajitdutta14432 жыл бұрын
@@UnfoldDataScience Thanks for your quick response.
@subhajitdutta14432 жыл бұрын
Epic
@UnfoldDataScience2 жыл бұрын
Thanks Subhajit🙂
@willhallahan3986 Жыл бұрын
Actually I have heard of research that indeed employee height influences payrates. Taller workers get more $$$$!