All the possible polygons!

  Рет қаралды 675,327

Aldo Cavini (aldoaldoz)

Aldo Cavini (aldoaldoz)

Күн бұрын

Пікірлер: 1 000
@dannygjk
@dannygjk 9 жыл бұрын
lol I love how for 17 you have to go through a complex series of steps to be able to construct a line segment which is then used to draw the 17-agon. Insane.
@ffggddss
@ffggddss 8 жыл бұрын
Yes, that's a heptadecagon. The rule for constructibility involves the Fermat primes, which are of the form 2^(2ᵏ) + 1 when that's a prime. The only such numbers currently known to be prime are when k = 0, 1, 2, 3, 4: {3, 5, 17, 257, 65,537} [Curiously, you can also get 2 if you're willing to set k = -∞.] If you think *that's* insane, check out the construction of the 257-gon! And, yes, there was a guy who spent ("wasted" according to the writer of the piece I read about this) 10+ years of his life composing the construction of the 65,537-gon!!!
@dannygjk
@dannygjk 8 жыл бұрын
ffggddss lol Obviously he was insane and probably in even worse mental condition after he finished.
@1anya7d
@1anya7d 7 жыл бұрын
Where can we find that article?
@iCore7Gaming
@iCore7Gaming 6 жыл бұрын
@@ffggddss Yeah no one cares
@kvdrr
@kvdrr 6 жыл бұрын
@@iCore7Gaming stop projecting your pathetic ignorance onto everyone
@6infinity8
@6infinity8 8 жыл бұрын
A few minutes later... Sides : +∞ * draws a red circle *
@gabrieldavis3071
@gabrieldavis3071 8 жыл бұрын
infinity is 5 minutes! .-.
@gabrieldavis3071
@gabrieldavis3071 8 жыл бұрын
casually skips 9 and 11
@gabrieldavis3071
@gabrieldavis3071 8 жыл бұрын
and 13 and 14
@ffggddss
@ffggddss 8 жыл бұрын
+ Gabriel Davis Well then, he also skipped 7, didn't he? OK, he doesn't come out and say so, but what he's covering are all the regular polygons that are *constructible* by classical methods (straightedge & compass) - up to n=51, anyway. The next one would have been 60, then 64, 68, 80, 85, 96, ... The rule for generating these possible n's is: n = {2ᵏ (for k=1, 2, ...) or 3 or 5 or 17 or 257 or 65,537} or any product of two or more of these factors - repeated *odd* factors not allowed (2ᵏ, when k > 1, is a repeated "2," but *is* allowed). So the outcasts from that list are {7, 9, 11, 13, 14, 18, 19, 21, 22, 23, 25, 26, 27, 28, 29, 31, 33, 35, 36, ...} In case you're wondering where the (odd) numbers in that list of factors come from, they are what are known as Fermat Primes (see Wikipedia for a nice treatment of these), which are all numbers of the form F[k] = 2^(2ᵏ) + 1 that are prime. F[0] = 2¹ + 1 = 3 (P) F[1] = 2² + 1 = 5 (P) F[2] = 2⁴ + 1 = 17 (P) F[3] = 2⁸ + 1 = 257 (P) F[4] = 2¹⁶ + 1 = 65,537 (P) and above this point, all of them are either known to be composite, or are too big to determine whether they are. F[5] through F[11] are all known composite, as are several larger ones. F[5] = 2³² + 1 = 4,294,967,297 = 641·6,700,417 F[6] = 2⁶⁴ + 1 = 18,446,744,073,709,551,617 = 274,177·67,280,421,310,721 F[7] = 2¹²⁸ + 1 = forget it!
@siddharthbhaiya1
@siddharthbhaiya1 7 жыл бұрын
I love geometry
@Kirkaman_hex
@Kirkaman_hex 6 жыл бұрын
*Dad* : you better go to sleep, you got school tomorrow *Me at 4 am* :
@gamerfuntombs3169
@gamerfuntombs3169 Ай бұрын
its 4:21 a.m so take that dad
@erc778
@erc778 27 күн бұрын
@@gamerfuntombs3169you gotta put the phone down man
@tomjerry84
@tomjerry84 7 жыл бұрын
Which alien figured out 17? I'm gonna kick this guy
@joeyhardin5903
@joeyhardin5903 6 жыл бұрын
It was Gauss but he's dead now
@theviniso
@theviniso 6 жыл бұрын
You can always kick his corpse.
@leonebersbacher3609
@leonebersbacher3609 6 жыл бұрын
@@theviniso calm down there Satan
@theshuman100
@theshuman100 6 жыл бұрын
@@theviniso talk about beating a dead gauss
@martinluther123
@martinluther123 6 жыл бұрын
@@joeyhardin5903 most underrated mathematician/intellectual ever. People talk all the times about Einstein and Newton, a few people talk about Leibnitz, and Euler but in my opinion Gauss was the true mad-man.
@someguy1478
@someguy1478 6 жыл бұрын
2:30 How the hell did Gauss figure this out
@SmileyMPV
@SmileyMPV 6 жыл бұрын
Come on Euler, out of all people, you must be able to understand.
@brienmaybe.4415
@brienmaybe.4415 6 жыл бұрын
Sit around with a pen paper a compass and a circle and think. Now go my child and find another infinite! There's infinite more to find!
@dandanthedandan7558
@dandanthedandan7558 6 жыл бұрын
@@brienmaybe.4415 *draws a circle* I HAVE MADE INFINITEGON!!!
@theM4R4T
@theM4R4T 5 жыл бұрын
Reverse engineering maybe
@flamematerial02
@flamematerial02 5 жыл бұрын
@@theM4R4T no haha
@nigovorilo
@nigovorilo 6 жыл бұрын
3:08 so u done all of this to draw a line? Edit: i know that this line is needed to draw a perfect shape, it is just a joke.
@Klblaz
@Klblaz 6 жыл бұрын
A line with exact length for this to work.
@lordlix6483
@lordlix6483 6 жыл бұрын
That line was a work of Gauss...
@Zimodo
@Zimodo 6 жыл бұрын
A very precise line
@forloop7713
@forloop7713 6 жыл бұрын
A curvy line
@idigger3545
@idigger3545 6 жыл бұрын
Ze D
@SamirHajili
@SamirHajili 11 жыл бұрын
17. easy to memorize :)
@mwwve
@mwwve 5 жыл бұрын
I’m reply
@sadcribby-RePENT
@sadcribby-RePENT 4 жыл бұрын
Who's mama?
@Nikos-iy7hi
@Nikos-iy7hi 4 жыл бұрын
MaThS aRe EaZy!
@denyraw
@denyraw 3 жыл бұрын
Can't believe how gauss managed to pull that off
@diceLibrarian
@diceLibrarian 3 жыл бұрын
Yay, Gauss
@krinkovakwarfare
@krinkovakwarfare 6 жыл бұрын
The method to make the 17 sided polygon is pretty cool. All those lines and connection to make just one particular line segment in order to draw with compass for all the 17 side is really radical.
@skiggywiggy8386
@skiggywiggy8386 6 жыл бұрын
It’s always darn seven and it’s impossible primeness. I mean they got 17 for crying out loud!
@Jkirek_
@Jkirek_ 6 жыл бұрын
11 feels the same way about it
@mrpellagra2730
@mrpellagra2730 6 жыл бұрын
Theres also the ducking 256-gon and 65537-gon
@nilsschenkel7149
@nilsschenkel7149 6 жыл бұрын
There is a proximation method credited to Albrecht Dürer you can find online
@davinchristino
@davinchristino 2 жыл бұрын
7, the number which ruins geometry in every way possible
@asheep7797
@asheep7797 Ай бұрын
@@mrpellagra2730257-gon.
@aldoaldoz
@aldoaldoz 12 жыл бұрын
Go to the italian version of wikipedia, and look for "poligono". There is a table with the number of sides and italian polygon names - click on those names: you'll find an animation that explains how to draw all the polygons up to 20 sides. (of course, 7, 9, 11, 13, 14, 18 and 19 sides polygons are not exact)
@CraftingTableMC
@CraftingTableMC 2 жыл бұрын
Ok
@chrisbova9686
@chrisbova9686 2 жыл бұрын
You still around? Whats the name of this program? Nice work. I'm very impressed.
@aldoaldoz
@aldoaldoz 2 жыл бұрын
@@chrisbova9686 These frames have been individually created by old programs I wrote myself - so ancient they used screen 12, so can't run any more.
@chrisbova9686
@chrisbova9686 2 жыл бұрын
@@aldoaldoz Im looking to have someone help me do just that, create a program that intersects different radii. Have you continued to do more with geometry?
@69420guyhaha
@69420guyhaha 2 жыл бұрын
@@aldoaldoz hey how to make the 17-gon (heptadecagon) it was like humanly impossible
@gavinmcginness3423
@gavinmcginness3423 6 жыл бұрын
The process for 10 seems more simple than 5. Wouldn’t you be able to use the 10 method to create a pentagon by connecting every other point?
@leonebersbacher3609
@leonebersbacher3609 6 жыл бұрын
Technically yes, it would be more practical in reality but the the method shown flr 5 is the one with the least amount of steps
@marksabol8758
@marksabol8758 8 жыл бұрын
For the square, why not just connect the four intersections of the radii and the cicle?
@aldoaldoz
@aldoaldoz 8 жыл бұрын
The way you suggest gives a perfect construction too - but it liked to draw a square with the sides parallel to the axes.
@rosiefay7283
@rosiefay7283 6 жыл бұрын
In that case, just bisect one of the 90-degree angles to get a 45-degree diagonal. That locates one of the vertices of the square you want. You already have the side-length. Alternatively, turn the paper 45 degrees.
@tinybabybread
@tinybabybread 6 жыл бұрын
@@rosiefay7283 That's exactly what the video did. It bisected the upper right angle first and the rest followed. In order to bisect accurately you'd need to do what it did.
@MeiZhang-q5k
@MeiZhang-q5k 4 жыл бұрын
Though the octagon was off-axis? Wow
@zazinjozaza6193
@zazinjozaza6193 6 жыл бұрын
Aye bruh, how come this video isn't infinately long?
@kirbs0001
@kirbs0001 6 жыл бұрын
Because this is only the polygons that can be drawn with a line segment and a compass
@jakebrowning2373
@jakebrowning2373 6 жыл бұрын
@DRAGEN RAID eh it was a weak r/woooosh
@fensti7917
@fensti7917 4 жыл бұрын
@@kirbs0001 well you can split all of them into more and more halfs so yk
@thatoneguy9582
@thatoneguy9582 3 жыл бұрын
@@fensti7917 non-trivial polygons, i guess
@Altinget
@Altinget Ай бұрын
Maybe because it gets so complicated that math science haven't found out more so far. 🤓
@MAGNETO-i1i
@MAGNETO-i1i 6 жыл бұрын
2:30 - when you invite friends for pizza
@Taib-Atte
@Taib-Atte 4 жыл бұрын
Underrated
@VayBeeqqwdqwd
@VayBeeqqwdqwd 4 жыл бұрын
most underrated comment I've ever seen
@QuotientGD
@QuotientGD 6 жыл бұрын
Actually, we call it a 'straight edge' instead of a 'ruler'. The main point of this video is to construct right polygons WITHOUT markings on the ruler, aka straight edge.
@Taffytyrann
@Taffytyrann 12 жыл бұрын
More ridiculous is, that Carl Friedrich Gauss invented this very method (to contruct a regular heptadecagon using only a straightedge and a compass) in 1796, at the age of 19. I'm 19 this year, and still struggling with high-school algebra...
@aldoaldoz
@aldoaldoz 15 жыл бұрын
The heptagon can't be EXACTLY drawn. Nevertheless there is a simple method that gives an error of about 1/10° on the central angle
@Landis963
@Landis963 Ай бұрын
And what of the nonagon? The triskaidecagon? The other skipped polygons?
@aldoaldoz
@aldoaldoz Ай бұрын
@@Landis963 7-gon and 9-gon are missing because these polygons CAN'T be exactly drawn by means of compass and strightedge only. Here only exact polygon constructions are shown.
@Landis963
@Landis963 20 күн бұрын
@@aldoaldoz And the 13-gon has the same problem, I take it? And by extension, do all polygons with prime numbers of sides have that difficulty?
@kohwenxu
@kohwenxu 19 күн бұрын
@@Landis963No! 257 and 65537 gons are possible to do with compass and straightedge, though I doubt anyone would want to do them.
@aldoaldoz
@aldoaldoz 12 жыл бұрын
You can also start from a given point (let's call it the origin): draw a line passing through it; with a compass determine two points on this line, at the same distance from the origin; build an equilateral triangle that has these two points as a base, and connect the third vertex with the origin: you get the perpendicular line.
@brenki
@brenki 8 жыл бұрын
Nice work, thank you! Please note that aproximate poligons: 7, 9, 11, 13-gon can also be constructed by using only a straightedge and a compass.
@azimovwatts6425
@azimovwatts6425 7 жыл бұрын
how
@ras662
@ras662 6 жыл бұрын
7: commons.m.wikimedia.org/wiki/File:Approximated_Heptagon_Inscribed_in_a_Circle.gif 9: commons.m.wikimedia.org/wiki/File:Approximated_Nonagon_Inscribed_in_a_Circle.gif 11: commons.m.wikimedia.org/wiki/File:Approximated_Hendecagon_Inscribed_in_a_Circle.gif 13: commons.m.wikimedia.org/wiki/File:Approximated_Tridecagon_Inscribed_in_a_Circle.gif
@MatheMagiX
@MatheMagiX 6 жыл бұрын
If you read above, you will see those are approximated. It's actually IMPOSSIBLE to construct a regular 7, 9, 11, 13-gon using a straight edge and compass.
@samisezgin
@samisezgin 4 жыл бұрын
After 10 years, i found the best practical video on KZbin. Thanks for your animation. Cheers!
@GewelReal
@GewelReal 6 жыл бұрын
Needs some smooth jazz
@four40four8
@four40four8 6 жыл бұрын
Clear straight forward explanation of a complex issue. Best video on this subject I have seen. The amount of work that went into this is awesome. Thank you.
@adamxue6096
@adamxue6096 6 жыл бұрын
Oh nice, somehow youtube felt like I need to watch this now. That said, this was incredibly well done, especially that 17gon... Christ... that was SOMETHING...
@arthurreitz9540
@arthurreitz9540 6 жыл бұрын
I hate when it happens
@therealzilch
@therealzilch 8 жыл бұрын
Very nice, especially 17! Is there an elegant mathematical reason that 17 is the highest prime polygon possible? Grazie! cheers from rainy Vienna, Scott
@bernardz2002
@bernardz2002 8 жыл бұрын
Scott Wallace 65537 gon is constructible as it is a fermat prime. Search for it (Especially Numberphile.)
@therealzilch
@therealzilch 8 жыл бұрын
Wow, very cool. Thanks, Bernard! One reason I asked is that I do polymetric music, and 17 is one of my main rhythms. Check it out if you're interested- soundcloud.com/scott-wallace-189088488/lydia-ventures-into-the-jungle Cheers from cold Vienna, Scott
@sage5296
@sage5296 6 жыл бұрын
I think someone found the method for 257 but I don’t think the method for the 6553$ is known lel
@asheep7797
@asheep7797 Ай бұрын
@@sage5296it is known, and people have constructed the 65537-gon, but only digitally.
@m8sonmiller
@m8sonmiller 10 жыл бұрын
But will it blend?
@Jackcabbit
@Jackcabbit 12 жыл бұрын
After fiddling around it seems I've found a way to do 11 sides: Make the bottom edge of that equilateral triangle as done at :20. Set the compass to the distance between the top of the circle and that line. Make arcs to each side using that distance. Where those arcs intersect the main circle is where you put the turning point of the next compass pass. Repeat until you get 11 sides.
@kattejuice
@kattejuice 15 жыл бұрын
17 was sick!!!
@dannystoll84
@dannystoll84 10 жыл бұрын
That about the 257- and 65537-gons?
@jaoreir
@jaoreir 10 жыл бұрын
Well y'know. You can just draw a circle.
@atrumluminarium
@atrumluminarium 10 жыл бұрын
The more the sides the more negligable is the difference from the polygon to a circle so there's really no point unless you have a paper the size of a building :/
@dannystoll84
@dannystoll84 10 жыл бұрын
Fair enough, but these constructions were never studied because they were useful (we'd use a protractor then). People studied them because they were mathematically interesting, and the breakthrough that proved the constructibility of the 257- and 65537-gons also laid the ground for huge advancements in algebra - ultimately leading to proofs of the unsolvability of the quintic polynomial and the three-body problem.
@tetraspacewest
@tetraspacewest 10 жыл бұрын
Danny Are those the only two provably constructable polygons that large?
@tetraspacewest
@tetraspacewest 10 жыл бұрын
Thomas Jones *that aren't just trivial 2^n-tuples of other polygons
@nagysamuel4963
@nagysamuel4963 9 жыл бұрын
dude u have no idea how much did u help me am in don bosco institute of technology and i have a geometry exam next Thursday i looked every where and i couldnt find a video as clear as yours
@nibbletrinnal2289
@nibbletrinnal2289 5 жыл бұрын
What you studied: Hexagon Whats actually on the test: 17-gon
@TunaBear64
@TunaBear64 3 жыл бұрын
Is a Heptadecagon
@dannygjk
@dannygjk 3 жыл бұрын
@@TunaBear64 ok what is the term for a 2d shape with 97 sides? Also is there a system by which I can correctly name any number of sides without a lot of memorization?
@Rando2101
@Rando2101 3 ай бұрын
​@@dannygjkThere's a system, but I don't really remember it
@TaranVaranYT
@TaranVaranYT 3 ай бұрын
@@dannygjk Enneacontakaiheptagon is a name for a 97 sided polygon, I don't think there is a unique system out there though.
@dannygjk
@dannygjk 3 ай бұрын
@@TaranVaranYT Ridiculously complicated. Why don't we just use numbers for the number of sides?
@learnerlearns
@learnerlearns 11 жыл бұрын
Very interesting and a good demonstration! I had never seen the 17 sided version before!
@aldoaldoz
@aldoaldoz 12 жыл бұрын
Actually I wondered to start from a circle, without knowing its center. But the way to determine the center if a circle is too complicated: so I started from a line and a circle centered on a "undeclared" point of the line (see below); I find the vertices of two equilateral triangles (one above and the other below the line) and connect them with a line, which is perpendicular to the initial one. The intersection of the the two lines is the center of the circle.
@2t22tornadosiren
@2t22tornadosiren 11 жыл бұрын
i wish we did this in my geometry class
@tsoneberry
@tsoneberry 6 жыл бұрын
2:30 You can see visually how crazy and ingenious Gauss is.
@PekaCheeki
@PekaCheeki 6 жыл бұрын
you don't know why you're watching this, you're not interested and you have better things to do. stop procrastinating.
@sylicone6952
@sylicone6952 6 жыл бұрын
So what are the better things that I have to do?
@PekaCheeki
@PekaCheeki 6 жыл бұрын
@@sylicone6952 figuring that out is probably the first thing you have to do
@katetoolboxbishop6676
@katetoolboxbishop6676 6 жыл бұрын
Get out of my mind
@bernd8608
@bernd8608 6 жыл бұрын
Sometimes we have to relax.
@esotericbeep5923
@esotericbeep5923 6 жыл бұрын
Needed to hear this
@tbone28steak
@tbone28steak 2 жыл бұрын
Im not gonna lie. Im more than confused but thats a cool way of creating polygons and increasing faces
@alexin6647
@alexin6647 2 жыл бұрын
It hurts my brain
@imtrunchbullicious1862
@imtrunchbullicious1862 6 жыл бұрын
When the art teacher says we decide what to draw and the nerd kid is there
@metamochibear
@metamochibear 6 жыл бұрын
that's... that's a lot of work just for a shape
@MAGNETO-i1i
@MAGNETO-i1i 6 жыл бұрын
I just google circle.jpng
@FireyDeath4
@FireyDeath4 Ай бұрын
At some point the corners get so blunt and hard to distinguish from apeirogonal circulation that you just stop caring I wonder why it is that people care, really. Probably just the completionism and challenges
@notnotandrew
@notnotandrew 9 жыл бұрын
There technically may be an infinite number of constructible polygons, even excluding the trivial ones that are the result of combinations of previous ones. We won't really know until someone solves the question of whether or not there are infinitely many fermat primes. I guess I'd better get to work on that.
@harryandruschak2843
@harryandruschak2843 8 жыл бұрын
+Andrew Becker only five Fermet Primes are known. To date, no one has been able to find a sixth one, or prove that a sixth one cannot exist.
@notnotandrew
@notnotandrew 8 жыл бұрын
Yes, exactly.
@rtxagent6303
@rtxagent6303 16 күн бұрын
You forgot the Hexecontapentakischiliapentakosiotriakontaheptagon (Or the 65537-gon) This polygon is constructable and has a prime number of sides.
@aldoaldoz
@aldoaldoz 16 күн бұрын
I created an animated gif showing the first step of the construction, look at: it.wikipedia.org/wiki/65537-gono#Idea_della_costruzione In addition, here is the complete construction of the 257-gon: it.wikipedia.org/wiki/257-gono#Costruzione
@blinkstanks
@blinkstanks 5 жыл бұрын
2:28 How to split a pizza between friends
@GodMineptas
@GodMineptas 7 ай бұрын
Who hás 17 friends?
@aldoaldoz
@aldoaldoz 14 жыл бұрын
@Mrhellotinfish: the radius of that circle is not important, since it is used to find some angles needed to draw the fist black stright line.
@forg7864
@forg7864 6 жыл бұрын
0:11 to 0:25 *illuminati confirmed*
@KnakuanaRka
@KnakuanaRka Ай бұрын
Some info from Wikipedia on constructible polygons: When doing a straightedge and compasses construction, you’re effectively drawing lines and circles based off other points in the constructions and seeing where they intersect; describing these lines and circles in terms of equations gives quadratic at most, so the results come from solving a bunch of quadratic-at-worst equations. That means any constructive numbers must be writable in terms of integers, +-x/, and square roots. For constructing polygons with n sides, proving it constructible just requires showing that cos(2pi/n) is constructible (for example, for a pentagon, cos(2pi/5) is (r5-1)/4); this is the distance from one corner of the polygon to the line between the center and an adjacent corner, which lets you get one side, and repeat to make the rest. It was proven that this only happens if n is the product of any number of 2s and distinct Fermat primes (primes of the form 2^(2^k) + 1). As it turns out, the only Fermat primes known are for k=0-4, giving 3, 5, 17, 257, and 65537. Each of these is constructible (the first three are shown, the latter 2 even more complex), and you can construct a product of them by drawing the two and using the distance between corners (for example, the construction for 15 shown here is simpler, but you can guarantee you can make it by drawing a triangle and pentagon with a shared corner in a circle, then the distance between a corner on each is a multiple of 1/15 the circumference you can use to build it out). And powers of 2 can be added to any of these (or the degenerate 2-gon, a straight line) by a simple angle bisection.
@stylesheetra9411
@stylesheetra9411 6 жыл бұрын
2:38 how did he choose the compass' angle?
@derekbernhard9191
@derekbernhard9191 6 жыл бұрын
That had been bothering me for way to long, I rewatched that part and thought about it for way to long before checking the comments. Still confused
@artashgyolecyan8498
@artashgyolecyan8498 6 жыл бұрын
The angle isn't important. Just instead of drawing whole circle he drew an arc of it for simplicity.
@danieleckert5008
@danieleckert5008 6 жыл бұрын
he just drew a little more than he needed. the exakt point to do the next line or circle is found by different constructions
@dede6giu
@dede6giu 4 жыл бұрын
it's the size of that line he did right before
@aliseifelnasr672
@aliseifelnasr672 6 жыл бұрын
02:39 where did that circle come from?
@dumtalentlessboi
@dumtalentlessboi 22 күн бұрын
3:25 cant fight the homestuck :(
@oyegorge7605
@oyegorge7605 6 жыл бұрын
La mera neta no sé por qué me lo recomendó KZbin, pero al final me quedé fascinado con este vídeo, como unos trazos pueden predecir los lados de todos los polígonos que existen, me gustó el vídeo.
@estebangalarza9953
@estebangalarza9953 6 жыл бұрын
El círculo del minuto 2:39 con que medida de referencia lo hace?
@aldoaldoz
@aldoaldoz 6 жыл бұрын
Cualquier rayo está bien: este círculo se usa para encontrar solo ángulos, no distancias.
@Neko_Void
@Neko_Void 6 жыл бұрын
Y que se fumo gaus
@estebangalarza9953
@estebangalarza9953 6 жыл бұрын
Si ya lo sé, pero por ejemplo, en todas las lineas que hace tiene una referencia, por ejemplo la mitad de el círculo o la intersección de dos lineas, pero en esta solo hace un semicirculo si ningún tipo de referencia
@ArielGoV
@ArielGoV 6 жыл бұрын
@@estebangalarza9953 te lo ha dicho, no usas nada de referencia, solo quieres ese circulo como guia en si mismo para poder ir encontrando los angulos (si te fijas, lo que hace despues de ese circulo son todas bisectrices, y estas solo dependen del angulo entre 2 lineas)
@ochentaycincoalbricias
@ochentaycincoalbricias 8 жыл бұрын
You can do the heptagon, try this: 1. divide a segment in 7 parts 2 make a circle with the center un the midpoint of the segment 3. pick the compass and, with the measure of the segment, draw a circle with the center of the first point 4. do the step 2 again but with the last point of the segment 5. make a line which starts in the point where the 2 circles made in steps 3 and 4 intersect and passes trough the point when finishes the 2/7 of the segment and finish when It touches with the first circle 6 .with the compass, pick the measure between the first point in the segment and the point we made in step 5 and we draw arcs in the circle until we reached the start point.
@kat-oh3hx
@kat-oh3hx 6 жыл бұрын
i believe the problem is "divide a segment in 7 parts"
@prismarinestars7471
@prismarinestars7471 6 жыл бұрын
There is a way to divide a segment with a strait edge and compass. I learned it in geometry class, it involves copying angles.
@entercherpfhalckhontralyty3542
@entercherpfhalckhontralyty3542 6 жыл бұрын
@@kat-oh3hx Phales' theorem, as we call it in Russia, could do.
@aldoaldoz
@aldoaldoz 12 жыл бұрын
I used methods that are more than 2000 (two thousand!) years old. They are mainly based on Euclid's Elements: in my opinion, the geometry heaven! Only the 17-gon is much more recent, since it has been found by Gauss on the late XVIII century.
@itryen7632
@itryen7632 2 ай бұрын
You have to respect that they fully animated the compass.
@Centaur-xs8ge
@Centaur-xs8ge 6 жыл бұрын
Here, i learned that circles have infinite corners.........
@Sergeant.Choccymilk6568
@Sergeant.Choccymilk6568 6 жыл бұрын
Welcome to the "Why is this recommended to me" show. Episode 230.
@meanbob088
@meanbob088 15 жыл бұрын
17 was ridiculous...
@CoolyanEmoji
@CoolyanEmoji 22 күн бұрын
Wow, you didn't forget the digon!
@Xardy5806
@Xardy5806 9 жыл бұрын
360:17 = 21.17647058823529411764705882352941 ??? lol ??? i want to know who did it first and how ...
@cyxpanek5302
@cyxpanek5302 8 жыл бұрын
Gauss
@Rando2101
@Rando2101 3 ай бұрын
Well apparently sin(2π/17) can be written with the 4 basic operations and square roots, so it's possible to construct it
@rabit1998g
@rabit1998g 6 жыл бұрын
-please youtube can i go sleep -hold on i gotta make you watch something
@jaimeeoww
@jaimeeoww 8 жыл бұрын
i know 7 is not a "regular" polygon, but you missed it.
@aldoaldoz
@aldoaldoz 8 жыл бұрын
+jeremy hansen a 7-gon can be a regular polygon. The problem is it can't be exactly drawn using strightedge and compass, and this is the reason why I messed it.
@jaimeeoww
@jaimeeoww 8 жыл бұрын
+aldoaldoz oh. that makes me really sad then; 7 is my favorite number. the rest of your video is really good though. I like the simple and fast animations. they get straight to the point.
@ffggddss
@ffggddss 8 жыл бұрын
+ jeremy "that makes me really sad then; 7 is my favorite number." Well then you can take comfort in its distinction as the smallest integer for which a regular polygon cannot be constructed by classical methods, with straightedge and compass. "they get straight to the point." Nice double-pun!
@jaimeeoww
@jaimeeoww 8 жыл бұрын
lol i didn't even realize i made a pun! thanks!
@BudderB0y2222
@BudderB0y2222 6 жыл бұрын
fuck you
@tzovgo
@tzovgo 9 ай бұрын
sad to see there isn't a construction of the regular 65537-gon here
@aldoaldoz
@aldoaldoz 9 ай бұрын
I described the construction of 257 and 65537 sides regular polygons on the italian version of wikipedia. Here is the complete construction of the 257-gon (explanation and animated gif are mine): it.wikipedia.org/wiki/257-gono#Costruzione and here is the first step of the 65537-gon: it.wikipedia.org/wiki/65537-gono#Idea_della_costruzione
@Diamondblade2008
@Diamondblade2008 2 ай бұрын
@@aldoaldoz Given that the 65537-gon would most likely look an ordinary circle, I wouldn't think it mattered how the 65537-gon is constructed given the sheer effort that would be needed. It would be just easier to draw an ordinary circle with a compass! (No offence or anything; I do appreciate your knowlege you have demonstrated in your videos).
@aldoaldoz
@aldoaldoz 2 ай бұрын
@@Diamondblade2008 Of course the 65537-gon looks like a circle. But even 257-gon does. The interesting thing is the discovery by Gauss, after more than 2000 years in which geometry was stuck at the pentagon and pentadecagon, that it was possible to exactly construct polygons of 17, 257 and 65537 sides. It was a sensational announcement. And he was only 18 years old!
@JubJubAc
@JubJubAc 6 жыл бұрын
This is why I didn't take geometry in highschool
@iasimov5960
@iasimov5960 6 жыл бұрын
Obviously you're not an electrician.
@JubJubAc
@JubJubAc 6 жыл бұрын
@@iasimov5960 ironically, I wanted to be an electrician, but I dropped the electronics course in high school to make room for some mandatory grad planning class...
@Orphiwn
@Orphiwn 11 жыл бұрын
thank you for the GREAT JOB here and also in Wikipedia. Without you Wikipedia in all languages would be very poor in all polygons' entries and your exceptional drawings not discovered fully yet.
@theswanp1199
@theswanp1199 6 жыл бұрын
Am i the only one wondering wtf happened to 7
@Neko_Void
@Neko_Void 6 жыл бұрын
It's imposible to make the 7
@mateussouza3979
@mateussouza3979 6 жыл бұрын
Cheesy Par 7 isn’t constructible with compass and straightedge.
@keterpatrol7527
@keterpatrol7527 6 жыл бұрын
for doubling shapes above ten sides, you are basically turning them into circles
@ChrisWilliamsRMWpigeon
@ChrisWilliamsRMWpigeon 12 жыл бұрын
A regular tridecagon is not constructible with compass and straightedge. However, it is constructible using a Neusis construction
@AJBallistic
@AJBallistic 20 күн бұрын
rest in piece any poor soul who needed to construct a 51 sided shape by first constructing a 17 sided shape
@aldoaldoz
@aldoaldoz 12 жыл бұрын
Look for "257-gono" in the italian version of wikipedia. There is the construction section I wrote myself - unfortunately I hadn't the time to translate it into english
@codytrim5402
@codytrim5402 4 жыл бұрын
Student: “Teacher this problem doesn’t make sense.” Teacher: “Just follow the instructions.” The instructions: 2:30
@thurlmusic
@thurlmusic 4 жыл бұрын
nobody insterested on 7 , 11 (on progress) , 13 , and (probably) 29 ? btw, i found cuberoots inside seventh roots in cos (2kπ/29) so constructing regular 29 gons might require angle septisections and angle trisections
@aldoaldoz
@aldoaldoz 4 жыл бұрын
I worked also on 257 and 65537 regular sides polygons, which in theory can be constructed with a strightedge and a compass. I did also some tries with all the regular polugons up to 20-gon. You can find all of them in this italian page of wikipedia, where the linked animated gifs are all my works: it.wikipedia.org/wiki/Poligono_regolare#Tabella_riepilogativa
@JoeBrowning-n9k
@JoeBrowning-n9k Ай бұрын
What about the Nonagon?
@aldoaldoz
@aldoaldoz Ай бұрын
7-gon and 9-gon are missing because these polygons CAN'T be exactly drawn by means of compass and strightedge only. Here only exact polygon constructions are shown.
@Diamondblade2008
@Diamondblade2008 Жыл бұрын
You are starting to encounter diminishing returns at 3:29 onwards because the shapes are starting to look more and more like circles instead of polygons.
@mambazo5
@mambazo5 11 жыл бұрын
Excellent video. I found #4 amusing, as the circle is already divided into 4 but at a 45 degree angle (like a diamond).
@hex-automata
@hex-automata Жыл бұрын
Pleasing to the eyes & brain. Awesomeness.
@Diamondblade2008
@Diamondblade2008 7 жыл бұрын
I tried drawing the heptadecagon using the method shown in this video. One thing I don't understand is how to draw that arc at 2:39 (which is shown after drawing that line from the centre of the 'eye' to the right hand edge of the circle). I know that the heptadecagon is constructible but it seems simply too messy to draw with all those steps. I'll just find a picture of a heptadecagon online and print that off instead.
@aldoaldoz
@aldoaldoz 7 жыл бұрын
The arc at 2:39 can be drawn whatever radius you want, as it is only needed to define some angles (not lengths).
@Diamondblade2008
@Diamondblade2008 7 жыл бұрын
aldoaldoz Good afternoon and thank you for your reply. After reading your helpful reply I tried to draw the heptadecagon again step by step and managed to get far as drawing the 'egg' at 3:05. However when it came to constructing the segments (3:05 onwards) my sheet of paper just became a total mess and everything got muddled. I don't know how the Ancient Greek mathematicians pulled it off!
@aldoaldoz
@aldoaldoz 7 жыл бұрын
Well, this drawing method is not so ancient! It cames after Gauss: he (at the age of 17!) understood some polygons could be drawn in addition to the classic series of polygons, those with an odd number of sides (triangle, pentagon, 15-gon). The "new entries" were 17-gon, 257-gon and 65537-gon. Look at wikipedia: you'll find many explanations, as well as my own animated gifs.
@JOELwindows7
@JOELwindows7 5 жыл бұрын
This is your daily dose of Recommendation Possible polygons
@Invalid571
@Invalid571 6 жыл бұрын
We know that the more vertices a polygon has the better it approaches the shape of a circle. Also when n --> infinity an n-gon (with finite area) will become a circle. Therefore the vertices of any polygon are points of the circle the polygon is inscribed. So if we find the equation of the circle the polygon is inscribed we can easily find the coordinates of its vertices. Generic circle equations: A circle with its center at (0,0) has the following equation: x^2 + y^2 = R^2 and its parametric form is: (x,y) = (Rcosθ,Rsinθ) , where θ = the angle of the point. A circle with its center at an arbitrary point (a,b) has the following equation: (x-a)^2 + (y-b)^2 = R^2 and its parametric form is: (x-a,y-b) = (Rcosθ,Rsinθ) --> (x,y) = (a+Rcosθ,b+Rsinθ), where θ = the angle of the point. Now we have all we need to find the vertices of any polygon.
@denelson83
@denelson83 2 ай бұрын
How do we even know these work? How were these constructions first devised?
@aldoaldoz
@aldoaldoz 2 ай бұрын
3 sides (and 6, 12, 24...) and 4 sides (and 8, 16...) constructions were demonstrated by ancient greeks. 5 sides too, though the construction showed comes from Ptolemy. 17-gon was demonstrated by Gauss.
@Jaehaeron
@Jaehaeron 6 жыл бұрын
I don't know why this is on my recommended list, but I like it.
@the_luna_lily6234
@the_luna_lily6234 6 жыл бұрын
So you use two perpendicular lines crossing at the mid point to make two more perpendicular lines crossing at the mid point to make a square instead of just using the original two perpendicular lines crossing at the mid point
@spretcher
@spretcher 6 жыл бұрын
So, now we know the egg comes before 17. Slowly working our way to the chicken.
@aldoaldoz
@aldoaldoz 12 жыл бұрын
Well, on the web you can find many articles on this polygon... just do a search for "heptadecagon"!
@QuotientGD
@QuotientGD 6 жыл бұрын
Legends say that the construction of the 17-gon produced 99% of the comments on this video
@ailurophile4341
@ailurophile4341 6 жыл бұрын
This video is 8 years old! Very cool.
@Filomatia
@Filomatia 14 жыл бұрын
Great video! You should say that you are not constructing the regular polygons, but also inscribing then in a circumference.
@javulicraft2228
@javulicraft2228 6 жыл бұрын
I FINALLY WATCHED IT. ARE YOU HAPPY NOW, KZbin?
@bpdolesdominoes4
@bpdolesdominoes4 5 жыл бұрын
Okay I just want to know who was able to come up with this complex thing to get a 17-sided polygon like what
@mpboomslang
@mpboomslang 12 жыл бұрын
But the sin and the cosine of pi/7 (in radians) can be found in simplest radical form.
@Rando2101
@Rando2101 3 ай бұрын
Only square root works.
@epsilonthedragon1249
@epsilonthedragon1249 6 жыл бұрын
How does someone figure out the process for seventeen?
@Mrhellotinfish
@Mrhellotinfish 14 жыл бұрын
how to draw 17? when you do the...first 'blue' in colour circle where is the crossing point of this circle?
@HerrXenon_
@HerrXenon_ 6 жыл бұрын
2:30 Well that escalated quickly
@sushamagirish
@sushamagirish 12 жыл бұрын
nice thing but I like to give a mathematical explanation to the whole process. Is it based on the length or angle?
@Paleoint
@Paleoint 12 жыл бұрын
So forgive me, but what was the trick for achieving the two orthogonal lines to begin with? Seems like you'd make an arc from any edge point through the center and where the edges of the arc cross the perimeter, you'd do it again? Any simpler way? Of course you can always use the Pythagorean Theorem, but wondering if there is a quicker approach. Thanks.
@KevinKurzsartdisplay
@KevinKurzsartdisplay 6 жыл бұрын
Now I know how to draw polygons, this will take my art to the next level.
@iqbalconan21
@iqbalconan21 6 жыл бұрын
Legend says he still drawing this polygon until indefinite time
@rk2045
@rk2045 11 жыл бұрын
Excellent method how did you got the idea of making such polygons. Thanks i will tell my friends about the methods .
@SHIN2025_official
@SHIN2025_official 3 жыл бұрын
Oh my gosh! You put this on KZbin before I was born (Jul 25, 2011) !
@-liquid-7548
@-liquid-7548 5 жыл бұрын
Why on 17 is there so many steps just to make a single line
@aldoaldoz
@aldoaldoz 12 жыл бұрын
Of course yes! Feel free to use the same animated gifs I uploaded to wiki commons. In addition, look at "65537-gono", is another article of mine (there is only the first construction step)
The Amazing Heptadecagon (17-gon) - Numberphile
13:40
Numberphile
Рет қаралды 1,3 МЛН
The problem Euclid couldn't solve
16:53
MathKiwi
Рет қаралды 116 М.
小丑女COCO的审判。#天使 #小丑 #超人不会飞
00:53
超人不会飞
Рет қаралды 16 МЛН
Сестра обхитрила!
00:17
Victoria Portfolio
Рет қаралды 958 М.
Langton's Ant
6:30
Aldo Cavini (aldoaldoz)
Рет қаралды 981 М.
Non-Euclidean Worlds Engine
5:15
CodeParade
Рет қаралды 11 МЛН
6 Impossible Puzzles With Surprising Solutions
12:46
MindYourDecisions
Рет қаралды 2,6 МЛН
How To Draw ✎ Geometric EYE  | DearingDraws
21:01
Dearing Wang (DearingDraws)
Рет қаралды 4,4 МЛН
How to Construct a 257-gon
17:47
Doggo's Science 2
Рет қаралды 53 М.
there are 48 regular polyhedra
28:47
jan Misali
Рет қаралды 2,9 МЛН
Inside the V3 Nazi Super Gun
19:52
Blue Paw Print
Рет қаралды 2,3 МЛН
Melting Copper Wire Into a River Table
16:53
Burls Art
Рет қаралды 3,1 МЛН
15 Sorting Algorithms in 6 Minutes
5:50
Timo Bingmann
Рет қаралды 25 МЛН
How I Built A LEGO Treadmill That Moves In EVERY Direction
18:06
Banana Gear Studios
Рет қаралды 1 МЛН