The given equation is rewritten as (8+1/x^2)^1/5+ (25-1/x^2)^1/5=3. Let a=(8+1/x^2)^1/5 and b = (25-1/x^2)^1/5. Then, a+b=3 and a^5+b^5=33. Setting ab=t, we get t^2-94+14=0. So, t=7,2. But t=7 does not yield real solutions. For t=2, a=1,2. But a=1 does not give a real x. So, a=2 and x = +/- 1/(2√6).
@Shobhamaths3 күн бұрын
x=1/(2√6) Taking lcm, and divide both sides by (x) ^1/5 then (8+1/x^2) ^1/5+(25-1/x^2) ^1/5=3 Let a^5=8+1/x^2 b^5=25-1/x^2 a+b=3 a^5+b^5=33 a^4-6a^3+18a^2-27a+14=0 Solve (a, b) =(1, 2) , (2, 1) x=1/(2√6)👍
@gregevgeni18643 күн бұрын
The given equation is equivalent to ⁵√(8x²+1) +⁵√(25x²-1)=3⁵√x² =>(:⁵√x²) ⁵√(8-1/x²) +⁵√(25-1/x²)=3 (1). Let t = ⁵√(8+1/x²) and r =⁵√(25-1/x²) => t + r = 3 (2) due to (1). Also t⁵ + r⁵ = 33 (3). Solving the system of (2), (3) => (t,r)=(1,2) or (2,1). So ⁵√(8+1/x²)= 2 => 8+1/x²=32 =>=> 1/x²=24 => x=±1/√24=±1/(2√6). . .
@Quest36692 күн бұрын
Eqn can be {8+(1/x^2}}^1/5+{25-(1/x^2)}^1/5= 3 gives a^5+b^5= 33 & a+b= 3 gives a=2;1 & b=1;2 or 1/x^2= -7; 24 or real X= +-√1/24=+-1/2√6 soln.
@Fjfurufjdfjd3 күн бұрын
χ=+ - [(6)^(1/2)]/12.
@Fjfurufjdfjd3 күн бұрын
Θα ηθελα για την καινουρια χρονια να ευχηθω στους υπευθυνους του καναλιου και στους λατρεις της αλγεβρας, ηρεμια, καλοσυνη, αφθονια σε καλα αισθηματα, περισσοτερες στιγμες ευτυχιας, λιγοτερο αγχος και σε μενα περισσοτερες ελευθερες ωρες για να ασχολουμαι με τα αγαπημενα μου μαθηματικα, μηπως και καταφερω να γλυτωσω απο το αλτσχαιμερ.
@RealQinnMalloryu42 күн бұрын
2^3 2^3x^1+1/2^3x^1+x+2^3 2^3 ➖ 1/x 1^1 1^1^1x+/1^1x+2^1 1^3 ➖/ 23/ (x ➖ 3x+2). 243x/(5x )^2➖ (1 )^2=243x/{25x^2 ➖ 1}=243x/,24x^2=1.3x^2 1.1x^2 1x^2 (x ➖ 2x+1). I wish you a happy new years eve and a happy new years day.