其實有點可惜沒有講到關於應用上MI300有多大的門檻要跨這件事。 看新聞,就知道所有在做AI的大公司都瘋狂的在搶NVIDIA的AI運算硬體,我都開玩笑說NVIDIA的產量限制了整個人類的進步XD 那為麼有更好的硬體不去用,還要跟人去搶NVIDIA的產品? 有原因的嘛~ 真的光是硬體設計夠優秀是沒有用的,沒辦法把軟體開發環境等整個生態系建立起來,搞得大家用起來門檻很高很麻煩,沒辦法“It just works",那就是失敗。大部份會去做AI Training的人剛開始入門的時候用就是學的某個框架,之後要大量使用的時候,也都會直覺得待在這個生態系。因為我只是要training model,專注的是思考新的訓練的方法,參數怎麼調等等,不太想花時間在轉換生態系這件事上面。舉個例子,大家用Windows,是生態系的關係,不是因為Windows有多好。Linux即使再好,再安全,再開放而且都能客製化還免費,這跟「一般使用者」沒有什麼關係,他們還是不想花時間在轉換生態系這件事上。再舉個例子,寫程式不就是有個基本的文字編輯器(notepad或vi)跟terminal就好了嗎?幹嘛要用IDE還被綁住? 如果今天是學術機構(不像企業有那麼強的時間跟競爭壓力),或有天才型工程師,能不受框架限制把所有硬體都運用自如,那很好啊?!就可以去用MI300或其它的硬體,沒必要被NVIDIA綁架。不過很可惜的是,真正需要大量AI硬體的大企業,他們有時間跟競爭的壓力,他們就是那個會被生態系綁架的那個「一般使用者」。
@暗黑的破壞神 Жыл бұрын
感謝講解 , 滿滿的真材實料 !
@w02190219 Жыл бұрын
很棒ㄟ 很喜歡這樣的影片說明方式! 很有學習的感覺
@petercandylee Жыл бұрын
From Tom’s Hardware The MI300 3D design allows for incredible data throughput between the CPU, GPU and memory dies while also allowing the CPU and GPU to work on the same data in memory simultaneously (zero-copy), which saves power, boosts performance, and simplifies programming.
Intel純論產品而言的確是非常有趣,但再好的產品如果不能在適當的時機上市,那就難免陷入生不逢時的問題,就像Ice Lake Xeon還有Sapphire Rapids遇到的瓶頸一樣,產品不錯,但原先預想的對手產品早就已經在市場上流通已久,等到上市的時候已經太遲
@petercandylee Жыл бұрын
NVLink is a connection between the CPUs and GPUs , so between sockets. The Infinity Fabric is many things more as it's build within the CPU/GPU, provides a link between dies and across sockets. Infinity Fabric isn't a kind of hypertransport but a superset of it. NVLink 是 CPU 和 GPU之间的连接,也是插槽之间的连接。 Infinity Fabric (AMD) 具有更多功能,因为它构建在 CPU/GPU 内,提供芯片之间和跨插槽的链接。 Infinity Fabric 不是一种超传输,而是它的超集
@張硯棠 Жыл бұрын
非常感謝解說如此清楚😀 最近IBM New Analogue Chip看來是很前瞻的設計,是否能講解一下😂 存算合一使是否才是打破馮諾依曼瓶頸?
@handswasher Жыл бұрын
Long time no see ! Missing you !
@judahxiiiyoung7320 Жыл бұрын
我靠,你終於回來了!你不要走啊! #好了評論完了可以開始看影片了
@EmpressHsiao Жыл бұрын
等很久了!!! 快點!!!
@Tech4AllYall Жыл бұрын
久等啦~
@LightnessRevant Жыл бұрын
極端的例外: Crisis初代就是直接用未上市的G80晶片做開發平台
@lokeung0807 Жыл бұрын
歡迎回來🎉
@tp27273529 Жыл бұрын
!!!!想說ig跟yt都沒有更新是不是不做了竟然又有影片了!!!
@Tech4AllYall Жыл бұрын
說真的,我即使是之前還有固定在更新影片的時候也都懶得更新ig哈哈哈😆
@markchen65494 ай бұрын
如果是年更的話,差不多是時候了😂😂😂
@johnnytshi10 ай бұрын
Actually, in LLM, higher memory is way more important. If you have to sync intermediate values, it's a lot slower. So if the chip can hold the entire model, that would be the fastest, with data sharding only.
There are a couple of reasons why MI300 is not selling 1. It is not ready - it won't be ready until next year 2024. 2. The older versions (MI250, MI100) are not selling well because the supporting software is not mature. But this will change because large software houses Microsoft, Pytorch, and Hugging Face are helping AMD to optimize its software. Large tech companies want to have a second source.