An Exponential Rational Equation

  Рет қаралды 2,630

SyberMath

SyberMath

Күн бұрын

Пікірлер: 24
@pizza8725
@pizza8725 Күн бұрын
The imaginary solutions are (7ln(2)+2ipin)/ln(2) You did the solution when n=0 which is real
@TejasDhuri-p8z
@TejasDhuri-p8z 15 күн бұрын
Let 2^x=m, m³-1/m²+m+1=127 a³-b³=(a-b)(a²+ab+b²) (m-1)(m²+m+1)/(m²+m+1)=127 m²+m+1 !=0, Thus m-1=127 m=128 2^x=2⁷ Thus x=7
@arekkrolak6320
@arekkrolak6320 15 күн бұрын
Technically you dont have to depress cubic equation to solve it, we usually do it because then the formulas are much simpler, but there is also formula for cubic in standard form
@SyberMath
@SyberMath 12 күн бұрын
what is it? can you share?
@gaborpaul
@gaborpaul 15 күн бұрын
Most straightforward: Add 1 to both sides of the equation, obtaining RHS=2^7. On the LHS, adding one is equivalent to a fraction in which the new numerator is the sum of the old numerator and the denominator. This means that the constants (-1 and +1) vanish, and the new numerator is simply 2^x times the denominator. That means that the equation leads to 2^x = 2^7, i.e., x=7.
@kailashanand5086
@kailashanand5086 11 күн бұрын
That was crazy!!! Nice find
@vaggelissmyrniotis2194
@vaggelissmyrniotis2194 14 күн бұрын
X=7+2kπi/ln2 the complex solution.
@neuralwarp
@neuralwarp 15 күн бұрын
But you ^didn't^ show us the first method. You rambled about it but didn't show it.
@KyyTyy
@KyyTyy 14 күн бұрын
😂😂😂
@SyberMath
@SyberMath 12 күн бұрын
left as an exercise for you 😄
@nirajkumarverma5299
@nirajkumarverma5299 15 күн бұрын
No complex solutions. If considering complex roots, by cross multiplication, it will make the Numerator and denominator zero. Which is not acceptable.
@MathNerd1729
@MathNerd1729 14 күн бұрын
There actually are complex solutions for x since 2^x = 128 has complex solutions other than x = 7. For example, x = 7 + 2πi/Ln(2) is also a solution to the equation.
@MsAcpaul
@MsAcpaul 14 күн бұрын
​@@MathNerd1729He is right actually. The bounds of the solution means that 4^x + 2^x + 1 ≠ 0 as a denominator cannot be zero.
@MathNerd1729
@MathNerd1729 14 күн бұрын
@@MsAcpaul While I agree that the denominator cannot equal 0, I was trying to point out that once you get 2^x = 128, there are still other complex numbers that satisfy that equation other than x = 7
@SyberMath
@SyberMath 12 күн бұрын
Agreed! you can write the general solution as x = 7 + i[(2πn)/ln(2)]
@E.h.a.b
@E.h.a.b 6 күн бұрын
Let 2^x = y y^3 - 1 = 127(y^2 + y + 1) (y - 1)(y^2 + y + 1) = 127(y^2 + y + 1) (y^2 + y + 1) (y-1 -127) = 0 (y^2 + y + 1) (y - 128) = 0 y^2 + y + 1 = 0 OR y - 128=0 No real root OR y = 128 2^x = 128 = 2^7 x = 7
@scottleung9587
@scottleung9587 15 күн бұрын
I also got x=7 as the only real solution. There are no complex solutions, since the quadratic cannot be zero after simplifying the fraction. Who am I kidding, I solved for them anyway!
@MathNerd1729
@MathNerd1729 14 күн бұрын
There actually are complex solutions for x since 2^x = 128 has complex solutions other than x = 7. For example, x = 7 + 2πi/Ln(2) is also a solution to the equation.
@Hemicubesquare
@Hemicubesquare 15 күн бұрын
x=7
@giuseppemalaguti435
@giuseppemalaguti435 14 күн бұрын
2^x-1=127...x=7
@AntonioOlivares-on3fl
@AntonioOlivares-on3fl 15 күн бұрын
x = 7
@rakenzarnsworld2
@rakenzarnsworld2 14 күн бұрын
x = 7
Summing An Interesting Infinite Series
10:12
SyberMath
Рет қаралды 2 М.
What are Catalan Numbers?
9:30
MathVerse Animated
Рет қаралды 7 М.
黑天使被操控了#short #angel #clown
00:40
Super Beauty team
Рет қаралды 61 МЛН
Support each other🤝
00:31
ISSEI / いっせい
Рет қаралды 81 МЛН
It works #beatbox #tiktok
00:34
BeatboxJCOP
Рет қаралды 41 МЛН
I Had an Amazing ONE-POINT Hold on Polus!
19:07
more vampirechicken
Рет қаралды 4,2 М.
Brazil l Nice Olympiad Math Radical Problem l find value of a?
9:01
Math Master TV
Рет қаралды 741 М.
can you solve this exponential equation?
12:45
Michael Penn
Рет қаралды 16 М.
A tricky problem from Harvard University Interview
18:11
Higher Mathematics
Рет қаралды 519 М.
Summing A Cool Infinite Series
10:41
SyberMath
Рет қаралды 8 М.
A Homemade Radical Equation
10:17
SyberMath
Рет қаралды 4,3 М.
Why There's 'No' Quintic Formula (proof without Galois theory)
45:04
not all wrong
Рет қаралды 555 М.
An Interesting Exponential Equation
8:59
SyberMath Shorts
Рет қаралды 1,2 М.
黑天使被操控了#short #angel #clown
00:40
Super Beauty team
Рет қаралды 61 МЛН