Great! To make it completely awesome, I guess n_features should be random as well, because in RF, the "random" aspect comes from two main sources: -Each tree is built from a random subset of the data (known as bootstrap sampling). -At each split in the tree, a random subset of features is considered.
@VritanshKamal Жыл бұрын
Why didn't I find this playlist b4 !! Great content. !
@Igormenphito Жыл бұрын
Amazing video, thank you for this!
@AssemblyAI Жыл бұрын
My pleasure!
@no4ura459 Жыл бұрын
I've looked to DT and RF videos and they are very cool !!! By the way will you guys plan to upload video on gradient boosting?? Pleaaaseee ❤
@franckchen2339 ай бұрын
You are saving my life rn 🙏
@KitkatTrading20246 ай бұрын
You are amazing! Thank you!
@AHMADKELIX Жыл бұрын
permission to learn, miss. thank you
@bzvn320010 ай бұрын
Hi, it's a good video, but I want to ask why you didn't implement the Random Subspace Method? Without it, it turns out that you have implemented bagging over trees. The Random Subspace Method is very important because it reduces error correlation between basic algorithms in random forest, which reduces variance of errors
@MahmouudTolba9 ай бұрын
That is true👍
@zelcadiana1337 Жыл бұрын
Hi. I am using random forest regression models to predict the mortality rate. My features have different dimensions, like millions, percents, thousands, etc. Do I need to do a standardization on my data before starting to built the models? Or any other kind of data transformation?
@mohamedhendy5556 Жыл бұрын
Can we use the same code for a regression task?
@pawlyk2 жыл бұрын
Great. Please, add the previous video to the playlist.
@AssemblyAI2 жыл бұрын
Thank you for the heads up!
@MrBaik1232 жыл бұрын
thank you for the informative video 👍
@AssemblyAI2 жыл бұрын
You're very welcome Aiman!
@thomaswolff3261 Жыл бұрын
Excellent video! Could you add code for getting the out-of-bag accuracy metric from the random forest? Thank you!
@exometria2 жыл бұрын
How do we print the predictions so we can see what it looks like? Just "print(predictions)?"
@AssemblyAI2 жыл бұрын
That should work!
@geethamegharaj5556 Жыл бұрын
Please share the code
@sanpavlovich9726 Жыл бұрын
How about np.random.choice(n_samples, n_samples // 3)? It will correspond to random subsamples method and help to decrease correlation between trees, so it should improve accuracy. And thank you for video!