This is a video that covers Automatic Differentiation. Attribution-NonCommercial-ShareAlike CC BY-NC-SA Authors: Matthew Yedlin, Mohammad Jafari Department of Computer and Electrical Engineering, University of British Columbia.
Пікірлер: 14
@lllepricon77153 жыл бұрын
Thank you! It was very informative. I finally understand why we need the Dual Numbers.
@mattyedlin72923 жыл бұрын
Thank you! I usually give a quiz on how to do the dual numbers for the 1 dimensional chain rule for f(g(x)) using dual numbers. Once you have that and the extension to multiple dimensions, we have the kernel for AUTODIFF in the general setting.
@Tibug2 жыл бұрын
I always get chills when people hold their whiteboard pen orthogonally.
@RealMcDudu2 жыл бұрын
The challenge at 07:00 - the trick is to use the full (here unproven) rule f(x+y\epsilon) = f(x)+y\epsilon df/dx. That way you can also prove the chain rule.
@YazlmaGonulVer4 жыл бұрын
Thanks for the great explanation.
@splash29813 жыл бұрын
Thanks. Anyone know where is the next video for a more complex example?
@AJ-et3vf2 жыл бұрын
Great video! Thank you!
@sherifffruitfly7 ай бұрын
Ah so dual numbers are used to reduce calculus to linear algebra. Important because linear algebra is the only thing we've gotten computers to do well. Cool!
@gabrielmccartney79752 жыл бұрын
Can we use dual numbers for integration?
@mattyedlin72922 жыл бұрын
This is a very interesting question. Dual numbers provide a way of automating differentiation for the sequence of back propagation - local maps. I will think about this more in the coming week
@gabrielmccartney79752 жыл бұрын
@@mattyedlin7292 thank you very much I'm looking forward to that!
@gabrielmccartney79752 жыл бұрын
@@mattyedlin7292 What topics about dual numbers and automatic differentiation has not been studied yet?